
FP7-215216

Architecture Paradigms and Programming Languages for Efficient programming
of multiple COREs

Specific Targeted Research Project (STReP) THEME ICT-1-3.4

Implementation of a first SaC to µTC compiler

Deliverable D4.2, Issue 1.0

Workpackage WP4

Author(s): Sven-Bodo Scholz, Stephan Herhut, Carl Joslin
Reviewer(s): Chris Jesshope
WP/Task No.: WP4 Number of pages: 44
Issue date: 31.1.09 Dissemination level: Public

Purpose: The purpose of this deliverable is to give an overview on the status of the implementa-
tion of a the auto-parallelising SaC to µTC compiler and to discuss the challenges encountered.
Results: The main results of this deliverable are a first implementation of a SaC to µTC
compiler, the documentation of the development process and a description of planned future
extensions.
Conclusion: The main conclusions are as follows: We have devised a strategy to extend our
research compiler by a new µTC back-end. This involves the design and implementation of a new
optimisation technique, a lowering phase from SaC with-loops to µTC create operations and
the extension of the memory model of our research compiler. Furthermore, we have designed and
implemented a prototypical resource management solution. Lastly, we have identified a viable
roadmap for further extensions to enhance the code generation and their implementation.

Approved by the project coordinator: Yes Date of delivery to the EC: 28.5.09

Document history

When Who Comments
14.1.09 Stephan Herhut Initial version
17.1.09 Sven-Bodo Scholz Minor modifications
19.1.09 Sven-Bodo Scholz Added section on implementation status
20.1.09 Stephan Herhut Added appendices and an outlook on future work

Project co-funded by the European Commission within the
7th Framework Programme (2007-11).

Table of Contents

1 Overview 1

2 Structure of the Compiler 1
2.1 Original Compilation Process . 2
2.2 Extended Compilation Process . 3

3 with-loop Flattening 4

4 with-loop Slicing 5

5 Memory Management 8

6 Managing Resources 8

7 Implementation Status 9

8 Ongoing Work 9

Appendices 10

A Obtaining and Installing sac2c 11
A.1 Example: TVD Solver for 2D Shock-Tube Problem 11

B sac2c Manual Page 25

1

1 Overview

The Apple-CORE project aims at developing many-core chip multi-processors, which we refer to as
Microgrids, and a corresponding tool-chain consisting of an operating system layer and compilers
for a low-level systems programming-language µTC [6], for the legacy language C with support
for auto-parallelization and for the novel high-level data-parallel functional language SaC (Single
Assignment C) [9]. We report in this document on the progress made on implementing a first
compiler from SaC to the systems language of the Microgrid architecture µTC and discuss the
challenges we have met.

In earlier publications [5, 4], we have analysed the Microgrid architecture in general and the
µTC language in particular with respect to their suitability as a target for the SaC language. Our
findings show that the Microgrid architecture with its support for fine-grained concurrency is an
ideal match for the data-parallel programming paradigm of SaC. Furthermore, we have learned
that µTC is a viable target language for SaC. However, to compile SaC to µTC, still a significant
semantic gap needs to be bridged: Whereas the main data-parallel construct of SaC, i.e., the
with-loop, fully supports n-dimensional data-structures and data-parallel operations thereon, the
corresponding operation of the systems language µTC, i.e., the create construct for concurrent
loops, is limited to one dimensional data-parallel operations.

To bridge this semantic gap, we have identified two solutions:

Flattening with-loops: Instead of performing the data-parallel operation on the high-level notion
of an n-dimensional array, we map the element-wise operation directly onto the 1-dimensional
data-vector, referred to as ravel in the following. This allows us to express an n-dimensional
operation directly as a 1-dimensional create. However, if the computation of the single ele-
ments of the result requires the value of the abstract, n-dimensional index position, flattening
the with-loop is not viable: The computations required to derive the n-dimensional index into
the abstract array from the 1-dimensional offset into the concrete ravel would severely degrade
if not offset the gains from the concurrent execution. For these cases, we have developed an
alternative approach.

Nested create Operations: In case the abstract, n-dimensional index of a with-loop is required
to compute the result of the with-loop, we map the with-loop to a nesting of create opera-
tions. As we have detailed in [5], for each dimension, we slice the result into a set of subarrays
that is then computed concurrently using the create construct. As each dimension is rep-
resented by its own create operation, computing the n-dimensional index is comparatively
cheap in this scenario: It suffices to concatenate the indices of the create operations. How-
ever, from an implementation perspective, this approach requires more effort. Support for
slicing a result into partial results which are then computed independently had to be added
to the compiler.

Before detailing these required extensions to our research compiler sac2c, we first give a coarse
overview of the compiler’s structure and the existing optimisations and identify where and how
the above extensions are best introduced. Next, we describe the implementation of the with-loop
flattening phase and our work on adding support for slicing of with-loops. Section 5 describes
the required extensions to the memory subsystem of sac2c. A general discussion of resource man-
agement for the create instruction is given in Section 6. Finally, we summarise the status of the
implementation and give an outlook on future work.

2 Structure of the Compiler

Our current research compiler sac2c has been developed over the course of more than 10 years.
Before the start of the Apple-CORE project, the compiler supported C and C with POSIX threads
as target languages. For the former, we are able to produce highly competitive sequential C code

2 2 STRUCTURE OF THE COMPILER

Front-End
• de-sugaring
• type inference

Optimisations
• WITH-loop folding
• WITH-loop fusion
• index vector elimination

First Lowering
• WITH-loop normalisation

Second Lowering
• memory management

Back-End
• code generation

n-dimensional WITH-loop

normalized WITH-loop

Figure 1: Overview of the main compilation stages during the translation of SaC programs to C
using the sac2c compiler.

from high-level SaC specifications. This is achieved by applying more than 50 distinct optimisations
during more than 200 compiler phases. By means of proprietary auto-paralellization techniques for
the main data-parallel construct of SaC, the with-loop, we are furthermore able to produce efficient
code for symmetric multi-processors using POSIX threads.

2.1 Original Compilation Process

Figure 1 gives an abstract overview of the compilation process. Due to the complexity of the
compilation process and the number of optimisations involved, we can only give a very course
overview here. We have only listed the most important steps in compilation, in particular those
that are of importance for the implementation of the µTC support described in this report. A
detailed description of all phases and the different intermediate languages used during compilation
would be beyond the scope of this report.

As can be seen, the compilation process can be split into five stages. The first stage, the front-
end, performs basic pre-processing steps to transform a SaC program into an equivalent de-sugared
program in the language core of SaC. Furthermore, the program is annotated with type information.
This information is used, apart for checking program correctness, at later stages to optimize the
code.

The next stage is the optimisation stage. During this stage, all high-level optimisations are
performed. High-level in this context refers to optimisations that can be performed on the SaC level,
i.e., those optimisations that can be implemented as source-to-source transformations. The most
noteworthy optimisations in this context are With-Loop Folding [8] and With-Loop Fusion [2],
which enhance the granularity of data-parallel operations by merging adjacent with-loops. A
further optimisation that is performed during this stage is Index-Vector Elimination [1], which
translates, where possible, expressions that contain a reference to the index vector of a with-loop
into equivalent expressions that use the offset into the ravel of the result instead.

During the third stage of the compiler, the first lowering, the high-level with-loop representation
is lowered into a normalised form which, where possible, computes the result in canonical order.
Introducing an explicit ordering of computation to the conceptually data-parallel with-loop allows
us to perform enhanced optimisations such as cache blocking. However, the with-loop after this
stage still remains n-dimensional.

The penultimate stage of the compilation process, the second lowering, introduces the notion of
memory. Until this stage, SaC programs only use the notion of values and storage into memory
is implicit. During this stage, the program is transformed in multiple steps into a program with

2.2 Extended Compilation Process 3

Front-End
• de-sugaring
• type inference

Optimisations
• WITH-loop folding
• WITH-loop fusion
• index vector elimination
• WITH-loop flattening

First Lowering
• WITH-loop normalisation
• WITH-loop splitting

Second Lowering
• memory management
• thread lifting
• thread distribution

Back-End
• code generation

n-dimensional WITH-loop

1-dimensional WITH-loop

explicit threads

Figure 2: Overview of the extended compilation stages during the translation of SaC programs to
C using the sac2c compiler.

explicit memory allocation and reference counting instructions. This stage is the first stage that
is dependent on the compilation target. The memory allocation strategy differs for sequential and
concurrent execution using the C and C with POSIX threads back-ends.

Finally, the last phase of compilation is the back-end. Depending on the target of compilation,
a different back-end is used. Although both back-ends share a common infrastructure, the code
generation, in particular for with-loops, is different.

2.2 Extended Compilation Process

To support µTC as a new target-language, three main extensions were required:

1. translation of n-dimensional with-loops into 1-dimensional create operations, where possible,

2. translation of n-dimensional with-loops into nested create operations, and

3. general support for producing µTC code in the back-end.

A key observation that allowed us to reduce the implementation effort is that the first extension
above can be reduced to a special case of the second extension by mapping n-dimensional with-loops
to 1-dimensional with-loops during the high-level optimisation stage. A 1-dimensional with-loop
then automatically triggers the production of a non-nested create operation during the general
translation of with-loops to create operations as outlined in [5]. This observation lead to the
implementation of a new optimisation phase With-Loop Flattening during the second stage
of compilation. Figure 2 gives an overview of the extended compilation process. The new With-
Loop Flattening phase is performed directly after Index-Vector Elimination. The latter,
as it turns out, enables the flattening of with-loops even for some cases where the index vector is
referenced in the with-loop body.

The second extension, the transformation of n-dimensional with-loops into nested create op-
erations, is performed in two steps. We first transform the n-dimensional with-loop into a nesting
of a new, one-dimensional with-loop representation. In a second step, this still relatively high-level
representation is then lowered to the final nesting of create operations.

This two-step lowering is motivated by the requirement to lower the with-loop to its one-
dimensional form before memory management. To introduce the notion of memory, we need to know

4 3 WITH-LOOP FLATTENING

how the computation will be sliced into sub-computations along the dimensions and what memory
will be shared between threads and which memory is thread local. However, performing memory
management on the loosely coupled create representation would inhibit many optimisations that
make use of special properties of the with-loop.

The resulting compilation process can be seen in Figure 2. The third compilation stage, the
first lowering, has been extended by a new With-Loop Splitting phase, which transforms n-
dimensional with-loops into a nesting of a new one-dimensional with-loop construct. Further-
more, the second lowering stage has been extended to support memory management for this new
one-dimensional with-loop. Once the memory management is complete, we then lower the represen-
tation further towards µTC by introducing the notion of threads to the intermediate representation.
Nested one-dimensional with-loops are transformed into a nesting of threads during the thread
lifting phase. Finally, the phase thread distribution performs some resource management.

The last required extension is to add support for emitting µTC code to the back-end. To keep
the implementation effort for the new back-end for the µTC target language manageable, we have
chosen to extend the existing C back-end. This decision was motivated by the fact that µTC is a
superset of C and therefore most of the code-generation is expected to be similar. Only for data-
parallel operations, i.e., the with-loop construct of SaC, the code generation needs to be adapted
to make use of the specific extensions of µTC for concurrent execution.

3 with-loop Flattening

As a first step, we have implemented the new With-loop Flattening optimisation. In general,
With-loop Flattening is a source-to-source transformation on with-loops. A n-dimensional
with-loop can be transformed into a semantically equivalent one-dimensional with-loop if it fulfils
the following conditions:

1. the with-loop index is not referenced within the body of the with-loop, and

2. the with-loop comprises only a single full partition,

With full partition, we refer to a partition that computes the entire iteration space of the whole
with-loop. For instance, for a genarray with-loop that computes a 4×4 matrix, a partition would
be considered a full partition if it iterates all elements in the iteration space [(0, 0), (4, 4)).

The first condition can easily be checked by inspecting the set of free variables of the with-loop
body. However, the second condition is more difficult to decide in general. It is, of course, straight-
forward to decide whether a with-loop comprises only a single partition. Whether such partition
is a full partition is not decidable in general.

As we have no means to detect full partitions in general, we limit the applicability of With-
loop Flattening in our current implementation to a subset of the theoretically transformable
with-loops for which we can decide the second property above. As an approximation for whether a
partition is a full partition, we use the following condition: For modarray and genarray with-loops,
we flag a partition as full if

• the lower bound is the constant vector of zeros,

• the upper bound equates to the shape of the result, and

• the step and width parameters are the constant vector of ones.

A full description of the transformation scheme for With-loop Flattening would be beyond
the scope of this report. However, to give an idea we provide a simple example:

1 A = with {
([0,0] <= iv < shape) : expr ;

3 } : genarray(shape , 0);

5

The above genarray with-loop has only a single partition which fulfils our criterion for full parti-
tions as described above. Given that the body of the with-loop expr does not contain references to
the index variable iv, the above code can be transformed into the following semantically equivalent
with-loop:

1 r = prod(shape);
An = with {

3 ([0] <= [i] < [r]) : expr ;
} : genarray([r], 0);

5 A = reshape(shape , An);

As can be seen above, the new with-loop defined in Line 2 now is one-dimensional (note the one-
element index [i]). It iterates over the full ravel of the result. The length of this ravel is computed
in Line 1 as the product of all elements of the shape vector shape of the array to be computed.
However, the above with-loop now computes a one-dimensional vector of length r instead of a
two-dimensional array. This is remedied in Line 5 by modifying the shape of the result of the new
with-loop to the shape of the result as specified for the old with-loop. Note that this operation
does not incur any significant runtime cost as it in the worst case updates a descriptor and in no
case needs to modify the data as such.

At first glance it may seem that the optimisation as described above only applies to a very small
set of with-loops in practice. However, due to existing optimisations, in particular the Index-
Vector Elimination, with-loops like the one above are rather common in real-world programs.
As an example, all basic map operations on arrays, e.g., element-wise addition and multiplication,
fall in the above category.

Although we have designed and implemented this optimisation specifically to support µTC as a
compilation target, the flattening of n-dimensional with-loops has proven beneficial in general. By
reducing the dimensionality of the iteration space of a with-loop, we are able to reduce the level
of loop-nestings required to compute the result, as well. The resulting reduced overhead manifests
in increased runtime performance.

We hope to publish a formal description of the With-loop Flattening transformation and
quantitative results on the resulting runtime improvements (via µTC as well as via standard C) as
soon as our toolchain is completed.

4 with-loop Slicing

The second extension we have implemented is the With-loop Slicing transformation performed
during the first-lowering stage. In this phase the normalized, n-dimensional with-loop encoding
used in the intermediate representation after the With-loop Normalisation phase is transformed
into a new one-dimensional with-loop representation. This new with-loop representation was
designed explicitly for a later mapping to the create construct of µTC. Apart from being one-
dimensional only, the new representation differs in the following key aspects from the original
n-dimensional version:

1. the with-loop index is no longer part of the with-loop but it is computed explicitly, and

2. the n-element step and width parameters are replaced by a single scalar step parameter.

A translation from the n-dimensional with-loop into the new one-dimensional with-loop needs to
account for these differences.

The first difference, the explicit encoding of index computations, might seem like an arbitrary
choice. However, it is a key requirement to be able to transform arbitrary n-dimensional with-loops
into nestings of one-dimensional with-loops. To motivate this requirement, consider the following
example:

1 A = with {
([0,0,0] <= iv < [4,3,4]) : B[iv];

3 } : genarray([4,3,4], 0);

6 4 WITH-LOOP SLICING

LE
V

E
L 0

LE
V

E
L 1

LE
V

E
L 2

LE
V

E
L 3

create idx: i0
with-loop idx: [i0]
ravel offset: s0*i0

create idx: i1
with-loop idx: [i0,i1]
ravel offset: r0+s1*i1

create idx: i2
with-loop idx: [i0,i1,i2]
ravel offset: r1+s2*i2

Figure 3: Graphical representation of the decomposition of an n-dimensional with-loop iteration
space into one-dimensional loops and the corresponding index computations.

The above code copies a 4×3×4 array B element-wise to a new array A. A schematic decomposition
into one-dimensional loops is shown in Figure 3. At each level, the iteration space or sub-result
computed by the current one-dimensional loop is shown. On the outermost level, the corresponding
loop computes the entire result by slicing the result into 4 sub-results along the first dimension
(depicted here as the z-axis). These sub-results are then computed by four loops on the first nesting
level. Again, each loop slices the iteration space to be computed into sub-spaces, this time along
the second dimension (depicted as the y-axis). For space reasons, Figure 3 shows the result of this
slicing for the left-most loop only. As can be seen, the slicing yields three 4-element vectors as new
sub-results to be computed on the second nesting level. Lastly, these are sliced into four scalar cells
which can then be computed by single threads.

To compute the value of a scalar cell in the above example, two values are required for each
thread at the leaves of the decomposition tree: The offset into the ravel of the result where the value
needs to be written to and the 3-element index of the original with-loop to perform the selection
into the source array B. However, the loop at each level considered in isolation only encodes the offset
into the outer-most dimension of the current sub-result. To make the offset and index available to
the threads, these need to be computed explicitly.

To reduce the computational complexity of offset and index computations, we use an encoding
the pre-computes a partial offset and index at each level. For the simple case of a single partition with
a step and width of 1 and scalar values at the inner-most nesting-level, the resulting computations
for each level are shown in the dotted boxes in Figure 3.

In case of the with-loop index, we simply combine the indices of the nested one-dimensional
loops to a vector. Note here that for more complex grid patterns, a single loop may not represent
an entire dimension. In this case, computing the with-loop index is more complex: All indices of
the one-dimensional loops that correspond to a single dimension need to be added.

For the offset into the ravel, we compute at each level the offset of the first element of the current
sub-result by adding the current offset from the top-left corner of the sub-result of the previous level
to the offset into the ravel computed at the previous level. This offset into the sub-result of the
previous level is computed by multiplying the index of the create operation at the current level by
the size of the sub-result one level below. The challenge here was to find an encoding that allows us
to compute this size in the general case, i.e., when the shape of the element is not known statically.

7

LE
V

E
L 0

LE
V

E
L 1

0:2 1:2

LE
V

E
L 2

0:4 3:4

0:2 0:2 1:2

0:1

Figure 4: Graphical representation of the decomposition of a two-dimensional with-loop with width
parameters into subcomponents that use only the step parameter.

This transformation only caters for the first difference between the n-dimensional with-loop
and the one-dimensional encoding used to model create operations. However, we furthermore need
to handle the second difference, i.e., we need to translate with-loops that make use of the width
parameter into semantically equivalent with-loops with a trivial width of one. As an example for
a with-loop using both the width and step parameters, consider the following with-loop:

1 A = with {
([0,0] <= iv < [3,4] step [2,4] width [1,3]) : expr1;

3 ([0,3] <= iv < [3,4] step [2,4]) : expr2;
([1,0] <= iv < [3,4] step [2,1]) : expr3;

5 } : genarray([3,4], 0);

The first partition above makes use of a width parameter and therefore cannot be directly expressed
as a µTC create operation. Instead, we first have to translate the above with-loop into a repre-
sentation that only makes use of the step parameter. To achieve this, we first identify each unique
component of the pattern described by the step and width parameters. Then, we express each
non-scalar component by a create operation of its own. The resulting new pattern then no longer
requires a width parameter.

To demonstrate this technique, we have depicted the pattern resulting from the above with-
loop in the top third of Figure 4. The first partition computes the 3 element blocks starting at the
top-left corner and repeating every 2 rows and 4 columns. The second partition fills the missing
fourth element in the pattern of the first partition. This single element is repeated every 2 rows
and 4 columns, as well. However, it starts with an offset of 3 columns. Finally, the last partition
computes every second row starting with row two. As it computes the entire row, it has a stepping
of 1 along the y-axis.

To resolve the width parameter and compute the step and offset of the repeating elements of
the computed array, we decompose the pattern along each dimension into its components. For the
above two-dimensional example, we thus need two decomposition steps. However, the approach
scales to arbitrary numbers of dimensions as required by the with-loop in its most general form.

The result of the first decomposition is presented in the middle section of Figure 4. As can be
seen, the pattern shown in the top section consists of two row-patterns. The first, shown on the
left, computes every second row beginning with the first row. This is represent by the offset:step
pair 0:2 in Figure 4. All other rows, i.e., every second row starting with row two, are computed by
the pattern given on the right side of Figure 4. The corresponding offset:step annotation is 1:2.

Next, we decompose these row patterns along the remaining dimension. This yields the final
three components of the pattern as shown in the bottom third of Figure 4. The first row-pattern

8 6 MANAGING RESOURCES

is split into two components. The first component repeats every four elements and starts with
the first element in each row. We have annotated this using the offset:step pair 0:4. For the
second component, which computes the remaining elements for this row-pattern, we similarly get a
offset:step pair of 3:4, i.e., the pattern repeats every four elements and starts at the third element
of the row.

The second row-pattern does not need to be split any further as it consists of a single component.
Thus, we get an offset:step annotation for the second row-pattern in this dimension of 0:1.

Using this decomposition into components, we can now apply the slicing technique described
earlier for the simpler with-loop. However, instead of slicing the with-loop until we reach the
computation of the inner-most elements, we now slice up to component level instead.

A full description of all transformations required to decompose the iteration spaces of with-
loops in general into their components would be beyond the scope of this report. We refer the
interested reader to our earlier publications on this technique in the context of With-Loop Nor-
malisation [3].

5 Memory Management

Once all n-dimensional with-loops have been transformed into nestings of one-dimensional with-
loops, the next stage of the compilation process, the second-lowering stage, introduces explicit
allocation and reference counting instructions.

To support the new one-dimensional with-loop, we had to extend the abstract memory model
that underlies the memory management subsystem of the sac2c compiler in two aspects:

1. The notion of sub-result had to be introduced, and

2. support for allocating memory in a different context than it is used in had to be added.

The first amendment results from the slicing of n-dimensional with-loops into nestings of one-
dimensional with-loops. Instead of one language construct to compute the result in a single step,
this transformation produces multiple with-loops that each compute only a part of a single result
array. This is nicely visualized for our example by Figure 3. On the inner-most level, only a single
element of the array is computed and thus only the memory for that cell is required. One level
further up, these single elements are then combined to an entire row. On level 1, these rows are
then combined to two-dimensional results before, finally, these are concatenated to the result.

The change to the computation of arrays introduced by with-loop slicing invalidates an as-
sumption that was previously built-into the memory subsystem of sac2c. Before we started imple-
menting the µTC back-end, the memory subsystem conceptually always allocated memory for the
entire result of an expression, e.g., for the result of a whole with-loop. However, with the partial
computation of results, now the memory for a previously single result might be allocated at multiple
sites and only partially. Unfortunately, the existing model to describe the shape and dimensionality
of allocated objects was not expressive enough to capture these changes. We have extended the
memory model and its intermediate representation accordingly.

Secondly, in the existing memory model of the sac2c compiler, all memory was allocated in
the same context in which it was initialised. With the introduction of threads, this assumption no
longer holds. Consider again the result of the slicing in Figure 3. At the lowest level, each thread
fills one cell of the 4-element vector allocated at the level above, which itself is a thread again.
Thus, the memory is allocated in a different context than where it is first used. We have extended
the memory model accordingly and taken first steps to allow for more explicit memory distribution
between threads in the future.

6 Managing Resources

Our experiments on the impact of thread distribution on runtime performance published in [5] have
shown that the implementation of the Microgrid architecture in the MGSim emulator is vulnerable

9

to resource deadlocks if a too näıve thread distribution scheme is used.
We have identified two common reasons for resource deadlocks:

1. flooding the thread table with threads on intermediate levels of the concurrency tree and thus
inhibiting the creation of the actual worker threads at the leaves, and

2. exhausting the maximum number of families due to a too deep nesting of create statements.

To prevent the first kind of resource deadlock, we have implemented an initial prototype of a
throttling mechanism to ensure that sufficient threads remain at the leaves of the concurrency tree.
We employ a program-global analysis that infers the maximum nesting level of with-loops in all
reachable execution paths of a program. From this we then derive the maximum nesting level of
create operations at runtime. Furthermore, for each with-loop level after slicing, the number of
partitions is counted. This information is used to compute the width of the concurrency tree.

From this coarse model of the program-global concurrency tree, a distribution of the available
maximum number of threads to one-dimensional with-loops is computed and annotated in the
intermediate representation. These annotations are then used in the back-end to emit corresponding
resource limits for the create statements.

Currently this distribution is static and the maximum number of threads available has to be
passed to the sac2c compiler using the maxthreads compile time option. However, to achieve porta-
bility of binaries between different Microgrid implementations, it would be desirable to configure
this parameter at runtime. Currently, different approaches, ranging from a runtime parameter for
the executables to a special system-call to retrieve the parameters of the platform, are discussed.

For the second kind of resource deadlock we have not implemented a solution yet, as it is not clear
whether this kind of resource deadlock should be handled by the systems language µTC instead. A
possible solution at the µTC level would be to revert to a sequential execution of create statements
once no more families can be created. Alternatively, the computation could be diverted to a different
place that still has families available. However, should family induced resource deadlocks not be
handled by the µTC language, one approach to prevent these at the SaC level would be to emit
sequential code instead of create statements after a certain nesting depth of with-loop slices.

The implementation of resource management is still in its very early stages as we so far are not
able to experiment with the simulation platform as a corresponding µTC compiler is not available.
Furthermore, a simulation using the utc-ptl [10] libraries is not possible in this case, as the utc-ptl
implementation has different resource constraints and in particular is not vulnerable to deadlocks.

7 Implementation Status

We have implemented all the required extensions as described in the previous sections. A pre-
compiled binary distribution for multiple architectures is available from the Apple-CORE website
at http://www.apple-core.info/resources/. We have tested this version of the compiler with
the utc-ptl software implementation of the SVP model. We have used a slightly patched version
of the third release of utc-ptl. The required patch, alongside a helper script, is available from the
Apple-CORE website, as well. A detailed description of how to install and use sac2c for use with
utc-ptl can be found in Appendix A.

8 Ongoing Work

The current implementation of the SaC to µTC compiler is only an initial prototype. First experi-
ments and analyses of the generated code have already revealed a range of potential optimisations.

Firstly, the decomposition of with-loops into one-dimensional with-loops may lead to subopti-
mal nestings of create operations. In particular, our current implementation often generates thread
families with very few threads. We expect that using a sequential implementation in these case to
save on resources for further family creations might be advantageous. However, we have decided to

10

postpone further research into this direction until we can perform a more exhaustive study on the
Microgrid emulator.

A second optimisation is the extension of the With-loop Flattening optimisation to a wider
range of partition and generator combinations. This, however, requires more sophisticated array-
access analyses. We hope to be able to extend sac2c accordingly in the near future.

The code generation for fold with-loops offers a further potential for optimisation. Our current
compilation scheme, as detailed in [5], is based on a sequential synchronisation. For sufficiently
complex fold operations, it might be advantageous to use a different synchronisation scheme instead.
Again, we would like to empirically study the current implementation on the Microgrid emulator
first before trying a different synchronisation strategy.

As already mentioned in Section 6, the current resource analysis and management is based on
rather simple heuristics. We expect that a more sophisticated analysis would allow us to improve on
this. Furthermore, an extension of µTC with more explicit resource managing mechanisms might
be of help in this respect, as well.

We will further exploit all the above optimisation potentials as soon as we are able to use the
emulation platform to obtain realistic runtime estimates. In the meantime, we concentrate on those
optimisations of which we already know that they in general improve runtimes, e.g., an extended
version of the With-Loop Flattening optimisation.

A.1 Example: TVD Solver for 2D Shock-Tube Problem 11

APPENDIX A - Obtaining and Installing sac2c

We have made a special version of the sac2c distribution that contains a binary of the sac2c
compiler with added support for the µTC back-end available online. Periodicly updated archives
for a range of platforms can be downloaded from the resources section of the Apple-CORE website
at http://www.apple-core.info/resources/.

To compile SaC programs using µTC as back-end language, furthermore the utc-ptl Microgrid
implementation (release 3) is required. utc-ptl can be obtained from its maintainer Michiel van
Tol (mwvantol@science.uva.nl).

As utc-ptl is based on C++ and as it uses the standard library of C++, as well, it cannot
be directly used to compile µTC programs that make use of the C standard-library. In particular,
the implementation of the function malloc for allocating memory on the heap differs in utc-ptl
from the corresponding function in the C standard-library. To circumvent these incompatibilities,
we have implemented an adapter script mutcc (short for µTC compiler) that rewrites the µTC
produced by sac2c such that it is compatible with utc-ptl.

As a further functionality, our adapter script emulates a standard C-compiler command-line
interface. This allows us to use the utc-ptl µTC to C++ translator as a direct replacement for
any standard C compiler. The adapter script is available in the resources section of the Apple-CORE
website at http://www.apple-core.info/resources/, as well.

We have slightly modified the stock utc-ptl distribution to allow for a better integration with
the mutcc helper script. An according patch is available online at the same location as the mutcc
script itself.

To make sac2c aware of the mutcc script, it suffices to place the script into a directory where
it can be found by the system shell, i.e., in a directory listed in the PATH environment variable on
UNIX systems, and to set the environment variable UTCPTLHOME to the directory where the utc-ptl
distribution is located. Lastly, the sac2c configuration file .sac2crc in the user’s home directory
needs to be amended by the following two lines:

1 target utcptl:
CC := "mutcc"

Note that the file might not yet exist or might be empty.
Once the mutcc adapter script has been set up as described above, the examples that come with

the sac2c compiler (and of course any other valid SaC program) may be compiled to µTC using
the following command line

sac2c -B mutc -target utcptl -O3 example.sac -o example

where example.sac is the name of the source file to compile and example is the name of the resulting
binary executable. The first argument -B mutc chooses the µTC back-end over the default C99
back-end. By adding the -target utcptl flag, we instruct the sac2c compiler to use the mutcc
script as back-end compiler. A full description of the sac2c compiler options is given in Appendix B.

A.1 Example: TVD Solver for 2D Shock-Tube Problem

We have successfully compiled the TVD solver example [7] using the µTC back-end and were
able to show that a sufficient amount of concurrency is produced to utilize the latency hiding and
concurrency features of the Microgrid architecture. However, as the toolchain for the Microgrid
emulator MGSim is not yet available, we were unable to quantify what impact this has on the actual
runtime compared to a sequential version.

The TVD solver implementation that we have used for our experiments is part of the demo suite
that comes with the sac2c compiler distribution. To give an idea of its nature, we reproduce the
source code here, as well.

/***

2 *

12

* TVD solver for 2D shock -tube problem

4 *

* Alexey Kudriavtsev , 2008

6 *

**/

8

import StdIO: all;

10 import Array: all;

import ArrayIO: all;

12 import Math: all;

import File: all;

14

#define NSAVE 10

16

#ifndef OUTFILE_TECPLOT

18 #define OUTFILE_TECPLOT "outputs/Tecplot2d.dat"

#endif

20

#ifndef OUTFILE_GRID

22 #define OUTFILE_GRID "outputs/grid2d.dat"

#endif

24

#ifndef OUTFILE_FLOW

26 #define OUTFILE_FLOW "outputs/flow2d.dat"

#endif

28

/***

30 *

* problem -specific constants:

32 */

34 #ifndef NX /* Number of cells along X */

#ifdef CAJ

36 #define NX 2000

#define NX4 2004

38 #else

#define NX 400

40 #define NX4 404

#endif

42 #endif

44 #ifndef NY /* Number of cells along Y */

#ifdef CAJ

46 #define NY 2000

#define NY4 2004

48 #else

#define NY 400

50 #define NY4 404

#endif

52 #endif

54 #ifndef XL /* Size of domain along X */

#define XL 2d

56 #endif

58 #ifndef YL /* Size of domain along Y */

#define YL 2d

60 #endif

62 #ifndef GAM /* Ratio of specific heats */

#define GAM 1.4d

64 #endif

66 #ifndef NJET /* Number of points across nozzle exit */

#define NJET 200

A.1 Example: TVD Solver for 2D Shock-Tube Problem 13

68 #endif

70 /***

*

72 * algorithm configuration:

*/

74

#ifndef IADV /* time integration method */

76 #define IADV 3

#endif

78

#ifndef IMUSCL /* MUSCL reconstruction method */

80 #define IMUSCL 1

#endif

82

#ifndef IAXIS /* Switch of plane/axisymmetric flow */

84 #define IAXIS 0

#endif

86

88 /***

*

90 * derived constants:

*/

92

#define DX (XL/tod(NX)) /* Spatial increment along X */

94 #define DY (YL/tod(NY)) /* Spatial increment along Y */

96 /***

*

98 * fixed constants:

*/

100

#define CFL 0.95d /* Courant -Friedrichs -Levy number */

102 #define MS 2.2d /* Shock wave Mach number */

104

/*

106 * Maximum extension of 1D arrays

*/

108 #ifndef nmax

#define nmax 400

110 #define nmax4 404

#endif

112

/*

114 * Energy as function of primitive variables

*/

116 inline double energ (double r, double p,

double ux, double uy)

118 {

return(p/(GAM -1d)+0.5d*r*(ux*ux+uy*uy));

120 }

122 /*

* Pressure as function of conservative variables

124 */

inline double press (double mx, double my,

126 double e, double r)

{

128 return ((GAM -1d)*(e-0.5d*(mx*mx+my*my)/r));

}

130

/*

132 * MIN_MOD limiter

14

*/

134 inline double MIN_MOD (double a, double b)

{

136 if (a*b < 0d)

c = 0d;

138 else{

if (fabs(a) < fabs(b))

140 c = a;

else

142 c = b;}

144 return (c);

}

146

/*

148 * Primitive variables from conservative ones

*/

150 specialize double [+] poststep (double[NX ,NY ,7] q);

inline

152 double [+] poststep (double [+] q)

{

154 q = with { ([0,0,4] <= iv <= [NX -1,NY -1,4])

: press(q[iv -[0,0,4]],q[iv -[0,0,3]],

156 q[iv -[0,0,2]],q[iv -[0 ,0 ,1]]);

([0,0,5] <= iv <= [NX -1,NY -1 ,5])

158 : q[iv -[0 ,0 ,5]]/q[iv -[0 ,0 ,2]];

([0,0,6] <= iv <= [NX -1,NY -1 ,6])

160 : q[iv -[0 ,0 ,5]]/q[iv -[0 ,0 ,3]];}

: modarray(q);

162

return(q);

164 }

166 /*

* Cell -centered grid

168 */

double[NX], double[NY] init_grid ()

170 {

x = with { ([0] <= [ix] <= [NX -1])

172 : DX*(tod(ix)+0.5d);}

: genarray ([NX], 0d);

174

y = with { ([0] <= [iy] <= [NY -1])

176 : DY*(tod(iy)+0.5d);}

: genarray ([NY], 0d);

178

return (x,y);

180 }

182 inline

void save_step(double [+] x, double [+] y, double [+] q)

184 {

save_grid(x,y);

186 save_flow(q);

}

188

/*

190 * Saves grid to file

*/

192 inline

void save_grid (double[NX] x, double[NY] y)

194 {

File ff;

196

iv,ff = fopen (OUTFILE_GRID ,"w");

A.1 Example: TVD Solver for 2D Shock-Tube Problem 15

198

for (ix=0; ix <= NX -1; ix++)

200 fprintf(ff , "%lf \n", x[ix]);

202 for (iy=0; iy <= NY -1; iy++)

fprintf(ff , "%lf \n", y[iy]);

204

fclose (ff);

206 }

208 /*

* Initial flowfield

210 */

inline

212 double[NX,NY ,7] init_flow ()

{

214 u0 = 0d;

v0 = 0d;

216 p0 = 1d;

r0 = GAM;

218 e0 = energ(r0,p0,u0,v0);

ru0 = r0*u0;

220 rv0 = r0*v0;

222 q = genarray ([NX ,NY], [ru0 ,rv0 ,e0 ,r0 ,p0 ,u0 ,v0]);

224 return (q);

}

226

/*

228 * Saves flowfield to file

*/

230 inline

void save_flow (double [+] q)

232 {

File ff;

234

iv,ff = fopen (OUTFILE_FLOW ,"w");

236

for (ix=0; ix <= NX -1; ix++){

238 for (iy=0; iy <= NY -1; iy++){

fprintf(ff , "%1.19 lf\n%1.19lf\n%1.19lf\n%1.19 lf\n\n",

240 q[ix ,iy ,0], q[ix ,iy ,1], q[ix ,iy ,2], q[ix ,iy ,3]);

}

242 }

fclose (ff);

244 }

246 /*

* Calls different subroutines for

248 * reconstructing cell -face values

* from cell -centered ones

250 */

inline

252 double[nmax4 ,4], double[nmax4 ,4] muscl (double[nmax4 ,7] qc, double sx,

double sy , int n1, int n2)

254 {

qpl = genarray ([nmax+4], [0d,0d,0d,0d]);

256 qpr = genarray ([nmax+4], [0d,0d,0d,0d]);

258 if (IMUSCL == 1)

qpl ,qpr = muscl1 (qc, n1, n2);

260 else if (IMUSCL == 2)

qpl ,qpr = pmuscl2 (qc, n1, n2);

262 else if (IMUSCL == -2)

16

qpl ,qpr = xmuscl2 (qc, sx, sy, n1, n2);

264 else if (IMUSCL == 3)

qpl ,qpr = weno3 (qc, sx, sy, n1, n2);

266 else

printf (" Wrong value of IMUSCL! \n");

268

return (qpl ,qpr);

270 }

272 /*

* Calculates cell -face values using

274 * 1st order piecewise constant

* reconstruction

276 */

specialize double [+], double [+] muscl1 (double[NX ,NY ,7] qc , int n1 , int n2);

278 inline

double [+], double [+] muscl1 (double [+] qc, int n1, int n2)

280 {

qpl = genarray ([nmax+4,4], 0d);

282 qpr = genarray ([nmax+4,4], 0d);

284 qpl = with { ([n1 ,0] <= iv <= [n2 ,3])

: qc[iv+[0 ,3]];}

286 : modarray(qpl);

qpr = with{ ([n1 ,0] <= iv <= [n2 ,3])

288 : qc[iv+[0 ,3]];}

: modarray(qpr);

290

return (qpl ,qpr);

292 }

294 /*

* Calculates cell -face values using

296 * 2nd order MUSCL reconstruction of

* primitive variables

298 */

specialize double [+], double [+] pmuscl2 (double[NX ,NY ,7] qc , int n1 , int n2);

300 inline

double [+], double [+] pmuscl2 (double [+] qc, int n1, int n2)

302 {

qpl = genarray ([nmax+4,4], 0d);

304 qpr = genarray ([nmax+4,4], 0d);

306 dq = genarray ([nmax+3,4], 0d);

308 dq = with{ ([n1 -1,0] <= iv <= [n2 ,3])

: qc[iv+[1,3]]-qc[iv+[0 ,3]];}

310 : modarray(dq);

312 for (i=n1; i <= n2; i++){

314 dql = [dq[i-1,0],dq[i-1,1],dq[i-1,2],dq[i-1 ,3]];

316 dqr = [dq[i,0],dq[i,1],dq[i,2],dq[i ,3]];

318 for (L=0; L <=3; L++){

320 gq = MIN_MOD(dql[L],dqr[L]);

qpl[i,L] = qc[i,L+3] -0.5d*gq;

322 qpr[i,L] = qc[i,L+3]+0.5d*gq;

}

324 }

326 return (qpl ,qpr);

}

A.1 Example: TVD Solver for 2D Shock-Tube Problem 17

328

/*

330 * Calculates cell -face values using

* 2nd order MUSCL reconstruction of

332 * characteristic variables

*/

334 specialize double [+], double [+] xmuscl2 (double[NX ,NY ,7] qc , double sx ,

double sy, int n1, int n2);

336 inline

double [+], double [+] xmuscl2 (double [+] qc, double sx,

338 double sy, int n1, int n2)

{

340 qpl = genarray ([nmax+4,4], 0d);

qpr = genarray ([nmax+4,4], 0d);

342

dq = genarray ([nmax+3,4], 0d);

344

dq = with{ ([n1 -1,0] <= iv <= [n2 ,3])

346 : qc[iv+[1,3]]-qc[iv+[0 ,3]];}

: modarray(dq);

348

wq = genarray ([4],0d);

350

for (i=n1; i <= n2; i++){

352 r = qc[i,3];

c2 = GAM*qc[i,4]/r;

354 c = sqrt(c2);

356 dunl = sx*dq[i-1 ,2]+sy*dq[i-1 ,3];

dutl = -sy*dq[i-1 ,2]+sx*dq[i-1 ,3];

358 dunr = sx*dq[i,2]+sy*dq[i,3];

dutr = -sy*dq[i,2]+sx*dq[i,3];

360

wql = [dq[i-1,1]-r*c*dunl ,

362 dq[i-1,0]-dq[i-1 ,1]/c2,

dutl ,

364 dq[i-1 ,1]+r*c*dunl];

366 wqr = [dq[i,1]-r*c*dunr ,

dq[i,0]-dq[i,1]/c2,

368 dutr ,

dq[i,1]+r*c*dunr];

370

wq = with { ([0] <= L <= [2])

372 : MIN_MOD(wql[L],wqr[L]);}

: modarray(wq);

374

gun = 0.5d*(wq[3]-wq [0])/(r*c);

376 gut = wq[2];

gp = 0.5d*(wq[0]+wq[3]);

378 gr = gp/c2+wq[1];

gux = sx*gun -sy*gut;

380 guy = sy*gun+sx*gut;

382 gq = [gr,gp,gux ,guy];

384 for (L=0; L<=3; L++){

qpl[i,L] = qc[i,L+3] -0.5d*gq[L];

386 qpr[i,L] = qc[i,L+3]+0.5d*gq[L];}

388 }

390 return (qpl ,qpr);

}

392

18

/*

394 * Calculates cell -face values using

* 3rd order WENO reconstruction of

396 * characteristic variables

*/

398 specialize double [+], double [+] weno3 (double[NX ,NY ,7] qc , double sx ,

double sy, int n1, int n2);

400 inline

double [+], double [+] weno3 (double [+] qc, double sx,

402 double sy, int n1, int n2)

{

404 eps = [0.00000001d, 0.00000001d,

0.00000001d, 0.00000001d];

406 s13 = 1d/3d;

s23 = 2d/3d;

408

410 qpl = genarray ([nmax+4,4], 0d);

412 qpr = genarray ([nmax+4,4], 0d);

414 dq = with{ ([n1 -1,0] <= iv <= [n2 ,3])

: qc[iv+[1,3]]-qc[iv+[0 ,3]];}

416 : genarray ([nmax+3,4], 0d);

418 for (i=n1; i <= n2; i++){

r = qc[i,3];

420 c2 = GAM*qc[i,4]/r;

c = sqrt(c2);

422

dunl = sx*dq[i-1 ,2]+sy*dq[i-1 ,3];

424 dutl = -sy*dq[i-1 ,2]+sx*dq[i-1 ,3];

dunr = sx*dq[i,2]+sy*dq[i,3];

426 dutr = -sy*dq[i,2]+sx*dq[i,3];

428 wql = [dq[i-1,1]-r*c*dunl ,

dq[i-1,0]-dq[i-1 ,1]/c2,

430 dutl ,

dq[i-1,1]+r*c*dunl];

432

wqr = [dq[i,1]-r*c*dunr ,

434 dq[i,0]-dq[i,1]/c2,

dutr ,

436 dq[i,1]+r*c*dunr];

438 sl = wql*wql+eps;

sr = wqr*wqr+eps;

440

sl = sl*sl;

442 sr = sr*sr;

444 al = s13/sl;

ar = s23/sr;

446

bl = s23/sl;

448 br = s13/sr;

450 gwl = (bl*wql+br*wqr)/(bl+br);

gwr = (al*wql+ar*wqr)/(al+ar);

452

gunl = 0.5d*(gwl[3]-gwl [0])/(r*c);

454 gutl = gwl [2];

gpl = 0.5d*(gwl [0]+ gwl [3]);

456 grl = gpl/c2+gwl [1];

guxl = sx*gunl -sy*gutl;

A.1 Example: TVD Solver for 2D Shock-Tube Problem 19

458 guyl = sy*gunl+sx*gutl;

460 gql = [grl ,gpl ,guxl ,guyl];

462 gunr = 0.5d*(gwr[3]-gwr [0])/(r*c);

gutr = gwr [2];

464 gpr = 0.5d*(gwr [0]+ gwr [3]);

grr = gpr/c2+gwr [1];

466 guxr = sx*gunr -sy*gutr;

guyr = sy*gunr+sx*gutr;

468

gqr = [grr ,gpr ,guxr ,guyr];

470

for (L=0; L <= 3; L++){

472 qpl[i,L] = qc[i,L+3] -0.5d*gql[L];

qpr[i,L] = qc[i,L+3]+0.5d*gqr[L];}

474 }

476 return (qpl ,qpr);

}

478

/*

480 * Evaluates numerical flux using

* HLLE approximate Riemann solver

482 */

specialize double [+] flux (double[NX ,NY ,7] qpl , double[NX ,NY ,7] qpr ,

484 double sx, double sy, int n);

inline

486 double [+] flux (double [+] qpl , double [+] qpr ,

double sx, double sy, int n)

488 {

f = genarray ([nmax+1,4], 0d);

490

f = with {

492 ([0] <= [i] <= [n]) {

494 rl = qpr[i+1 ,0];

pl = qpr[i+1 ,1];

496 ul = qpr[i+1 ,2];

vl = qpr[i+1 ,3];

498 unl = sx*ul+sy*vl;

el = energ(rl,pl,ul,vl);

500 ml = rl*ul;

nl = rl*vl;

502 cl = sqrt(GAM*pl/rl);

504 ql = [ml, nl, el, rl];

fl = [unl*ml+sx*pl, unl*nl+sy*pl, unl*(el+pl), unl*rl];

506

rr = qpl[i+2 ,0];

508 pr = qpl[i+2 ,1];

ur = qpl[i+2 ,2];

510 vr = qpl[i+2 ,3];

unr = sx*ur+sy*vr;

512 er = energ(rr,pr,ur,vr);

mr = rr*ur;

514 nr = rr*vr;

cr = sqrt(GAM*pr/rr);

516

qr = [mr, nr, er, rr];

518 fr = [unr*mr+sx*pr, unr*nr+sy*pr, unr*(er+pr), unr*rr];

520 bl = min(unl -cl,unr -cr);

br = max(unl+cl,unr+cr);

522 bm = min(bl ,0d);

20

bp = max(br ,0d);

524

fc = (bp*fl-bm*fr+

526 bp*bm*(qr-ql))/(bp-bm);

} : fc;

528 } : genarray ([nmax+1], [0d,0d,0d,0d]);

530

return(f);

532 }

534 /*

* Advances solution in time

536 */

inline

538 double [+], double step_flow (double [+] q, double t,

double tk)

540 {

while ((fabs(t-tk) > 0.000000001d)){

542 dt = getdt(q);

dt = min(dt ,tk -t);

544

if (IADV == 1)

546 q = rktvd1 (q, dt);

else if (IADV == 2)

548 q = rktvd2 (q, dt);

else if (IADV == 3)

550 q = rktvd3 (q, dt);

else

552 printf (" Wrong value of IADV! \n");

554 t = t + dt;

printf ("t = %1.16e, dt = %1.16e \n",t,dt);}

556

return (q,t);

558 }

560 /*

* Evaluates available time step

562 */

inline

564 double getdt(double [+] q)

{

566 evmax = 0d;

568 for (ix=0; ix <= NX -1; ix++){

for (iy=0; iy <= NY -1; iy++){

570 c = sqrt(GAM*q[ix ,iy ,4]/q[ix ,iy ,3]);

ux = q[ix ,iy ,5];

572 uy = q[ix ,iy ,6];

ev = (fabs(ux)+c)/DX+(fabs(uy)+c)/DY;

574 evmax = max(ev ,evmax);

}

576 }

578 dt = CFL/evmax;

580 return (dt);

}

582

/*

584 * Time integration with forward Euler method

*/

586 specialize double [+] rktvd1 (double[NX ,NY ,7] q, double dt);

inline

A.1 Example: TVD Solver for 2D Shock-Tube Problem 21

588 double [+] rktvd1 (double [+] q, double dt)

{

590 rq = rhs(q);

592 q = with {([0 ,0,0] <= iv <= [NX -1,NY -1,3])

: q[iv] + dt*rq[iv];}

594 : modarray(q);

596 q = poststep (q);

598 return (q);

}

600

/*

602 * Time integration with 2nd order Runge -Kutta method

*/

604 specialize double [+] rktvd2 (double[NX ,NY ,7] q, double dt);

inline

606 double [+] rktvd2 (double [+] q, double dt)

{

608 q0 = q;

610 rq = rhs(q);

q = with {([0 ,0,0] <= iv <= [NX -1,NY -1,3])

612 : q[iv] + dt*rq[iv];}

: modarray(q);

614 q = poststep (q);

616 rq = rhs(q);

q = with {([0 ,0,0] <= iv <= [NX -1,NY -1,3])

618 : 0.5d*(q0[iv]+q[iv] + dt*rq[iv]);}

: modarray(q);

620 q = poststep (q);

622 return (q);

}

624

/*

626 * Time integration with 3rd order

* Runge -Kutta TVD method

628 */

specialize double [+] rktvd3 (double[NX ,NY ,7] q, double dt);

630 inline

double [+] rktvd3 (double [+] q, double dt)

632 {

q0 = q;

634

rq = rhs(q);

636 q = with {([0 ,0,0] <= iv <= [NX -1,NY -1,3])

: q[iv] + dt*rq[iv];}

638 : modarray(q);

q = poststep (q);

640

rq = rhs(q);

642 q = with {([0 ,0,0] <= iv <= [NX -1,NY -1,3])

: 0.25d*(3d*q0[iv]+q[iv] + dt*rq[iv]);}

644 : modarray(q);

q = poststep (q);

646

rq = rhs(q);

648 q = with {([0 ,0,0] <= iv <= [NX -1,NY -1,3])

: (q0[iv]+2d*q[iv] + 2d*dt*rq[iv])/3d;}

650 : modarray(q);

q = poststep (q);

652

22

return (q);

654 }

656 /*

* Evaluates right hand side

658 */

specialize double [+] rhs (double[NX ,NY ,7] q);

660 inline

double [+] rhs (double [+] q)

662 {

gm1 = GAM -1d;

664 gp1 = GAM+1d;

666 ps = (2d*GAM*MS*MS-gm1)/gp1;

rs = GAM*gp1*MS*MS/(gm1*MS*MS+2d);

668 us = 2d*(MS -1d/MS)/gp1;

es = energ(rs,ps,us ,0d);

670

qlbc = genarray ([2,NY],[rs*us ,0d,es,rs,ps,us ,0d]);

672 qlbc = with {

([0,NJET ,0] <= iv=[ix,iy,L] <= [1,NY -1 ,6]){

674 if ((L == 0) || (L == 5))

qval = -q[3-ix,iy,L];

676 else

qval = q[3-ix,iy,L];

678 } : qval;

} : modarray(qlbc);

680

qbbc = genarray ([NX ,2] ,[0d,rs*us,es,rs,ps ,0d,us]);

682 qbbc = with {

([NJET ,0,0] <= iv=[ix,iy,L] <= [NX -1 ,1,6]){

684 if ((L == 1) || (L == 6))

qval = -q[ix ,3-iy,L];

686 else

qval = q[ix ,3-iy,L];

688 } : qval;

} : modarray(qbbc);

690

rq = genarray ([NX,NY ,4],0d);

692

qc = genarray ([nmax+4,7],0d);

694

f = genarray ([nmax +1],[0d,0d,0d,0d]);

696

sx = 1d; sy = 0d;

698

for (iy=0; iy <= NY -1; iy++){

700

qc = with {([2 ,0] <= iv=[ix,L] <= [NX+1 ,6])

702 : q[ix -2,iy,L];}

: modarray(qc);

704

qc = with {([0 ,0] <= iv=[ix,L] <= [1 ,6])

706 : qlbc[ix,iy,L];}

: modarray(qc);

708

qc = with {([NX+2,0] <= iv=[ix,L] <= [NX+3 ,6])

710 : qc[NX+1,L];}

: modarray(qc);

712

qpl ,qpr = muscl (qc, sx, sy, 1, NX+2);

714

f = flux(qpl ,qpr , sx , sy , NX);

716 rq = with {([0,iy ,0] <= iv=[ix,j,L] <= [NX -1,iy ,3])

: rq[iv]+(f[ix,L]-f[ix+1,L])/DX;}

A.1 Example: TVD Solver for 2D Shock-Tube Problem 23

718 : modarray(rq);

}

720

qc = genarray ([nmax+4,7],0d);

722

f = genarray ([nmax +1],[0d,0d,0d,0d]);

724

sx = 0d; sy = 1d;

726

for (ix=0; ix <= NX -1; ix++){

728

qc = with {([2 ,0] <= iv=[iy,L] <= [NY+1 ,6])

730 : q[ix,iy -2,L];}

: modarray(qc);

732

qc = with {([0 ,0] <= iv=[iy,L] <= [1 ,6])

734 : qbbc[ix,iy,L];}

: modarray(qc);

736

qc = with {([NY+2,0] <= iv=[iy,L] <= [NY+3 ,6])

738 : qc[NY+1,L];}

: modarray(qc);

740

qpl ,qpr = muscl (qc, sx, sy, 1, NY+2);

742

f = flux(qpl ,qpr , sx , sy , NY);

744

rq = with {([ix ,0,0] <= iv=[i,iy,L] <= [ix,NY -1 ,3])

746 : rq[iv]+(f[iy ,L]-f[iy+1,L])/DY;}

: modarray(rq);

748 }

750 if (IAXIS == 1){

y = with {([0] <= [iy] <= [NY -1])

752 : DY*(tod(iy)+0.5d);}

: genarray ([NY], 0d);

754 rq = with {

([0,0,0] <= iv=[ix,iy,L] <= [NX -1,NY -1 ,3])

756 {qq = q[iv];

if (L == 2){

758 qq = qq + q[iv+[0 ,0 ,2]];}

uy = q[ix ,iy ,6];

760 yc = y[iy];

rqval = rq[iv]-qq*uy/yc;} : rqval;

762 } : modarray(rq);

}

764

return(rq);

766 }

768 /*

* Main program

770 */

int main()

772 {

tf = 0.05d;

774 tp = 0.05d;

776 x,y = init_grid ();

q = init_flow ();

778

#if defined (SAVE)

780 save_step(x,y,q);

#endif

782

24

t = 0d;

784 tk = t;

while (t < tf) {

786 tk = tk+tp;

q,t = step_flow(q,t,tk);

788

#if defined (SAVE)

790 printf ("\n record at t = %lf \n \n",t);

save_step(x,y,q);

792 #endif

}

794

return (0);

796 }

A.1 Example: TVD Solver for 2D Shock-Tube Problem 25

APPENDIX B - sac2c Manual Page

SAC - Single Assignment C

NAME: sac2c
VERSION: v1.00-beta (Buchette d’Anjou)
PLATFORM: darwin9.7.0_i686

DESCRIPTION:

The sac2c compiler transforms SAC source code into executable programs
(SAC programs) or into a SAC specific library format (SAC module and
class implementations), respectively.

The compilation process is performed in 4 separate stages:
1. sac2c uses any C preprocessor to preprocess the given SAC source;
2. sac2c itself transforms preprocessed SAC source code into C code;
3. sac2c uses any C compiler to generate target machine code;
4. sac2c uses any C linker to create an executable program

or sac2c itself creates a SAC library file.

When compiling a SAC program, sac2c stores the corresponding
intermediate C code either in the file a.out.c in the current directory
(default) or in the file <file>.c if <file> is specified using the -o
option. Here, any absolute or relative path name may be used.
The executable program is either written to the file a.out or to any
file specified using the -o option.

However, when compiling a SAC module/class implementation, the
resulting SAC library is stored in the files <mod/class name>.a
and <mod/class name>.so in the current directory.
In this case, the -o option may be used to specify a
different directory but not a different file name.

SPECIAL OPTIONS:

-h Display this helptext.
-help Display this helptext.
-copyright Display copyright/disclaimer.
-V Display version identification.
-VV Display verbose version identification.

-libstat Print status information of the given SAC library file.
-prsc Print resource settings.

-M Detect dependencies from imported modules/classes and
write them to stdout in a way suitable for the make

26

utility.
-Mlib Same as -M except that the output format is suitable

for makefiles used by the standard library building
process.

NOTE:
When called with one of these options, sac2c does not perform
any compilation steps.

GENERAL OPTIONS:

-D <var> Set preprocessor variable <var>.
-D <var>=<val> Set preprocessor variable <var> to <val>.
-cppI <path> Specify path for preprocessor includes.

-L <path> Specify additional SAC library file path.
-I <path> Specify additional SAC library source file path.
-E <path> Specify additional C library file path.

-o <name> For compilation of programs:
Write executable to specified file.

For compilation of module/class implementations:
Write library to specified directory.

-c Generate C-file only; do not invoke C compiler.

-v <n> Specify verbose level:
0: error messages only
1: error messages and warnings
2: basic compile time information
3: full compile time information
4: even more compile time information

(default: 3)

BREAK OPTIONS:

Break options allow you to stop the compilation process
after a particular phase, subphase or cycle optimisation.
By default the intermediate programm will be printed,
but this behaviour may be influenced by the following
compiler options:

-noPAB Deactivates printing after break.
-doPAB Activates printing after break.

-b<spec> Break after the compilation stage given
by <spec>, where <spec> follows the pattern
<phase>:<subphase>:<cyclephase>:<pass>.
The first three are from the list of
encodings below. The last one is a natural
number. Alternatively, a number can be used

A.1 Example: TVD Solver for 2D Shock-Tube Problem 27

for the phase, as well.

BREAK OPTION SPECIFIERS:

scp | 1 : Loading SAC program
loc : Locating source code
cpp : Running C preprocessor
prs : Parsing input file

pre | 2 : Preprocessing SAC program
hs : Hiding struct definitions behind typedefs and accessors
iotc : Introducing user-tracing calls
zgwl : Handling zero-generator with-loops
mgwl : Handling multi-generator with-loops
mowl : Handling multi-operator with-loops
acn : Resolving axis control and dot notation
rpr : Resolving pragma annotations
obi : Generating object initializers
csgd : Checking and simplifying generic definitions

mod | 3 : Running module system
rsa : Processing use and import statements
ans : Annotating namespaces
gdp : Gathering dependencies
pdp : Printing dependencies
imp : Retrieving imported symbols
uss : Retrieving used symbols
asf : Loading prelude functions

sim | 4 : Simplifying source code
w2d : Transforming while-loops into do-loops
ece : Eliminating conditional expressions
moe : Handling multiple operator expressions
flt : Flattening nested expressions
udt : Processing user defined types
ggtc : Generating generic type conversion functions

ptc | 5 : Converting to static single assignment form
ivd : Inserting variable declarations
itc : Converting type decls into type conversions
cwf : Creating wrapper functions
gon : Running global object analysis
goi : Generating global object initialiser
rso : Resolving global objects
rrp : Resolving reference parameters
ewt : Extending dispatch information
l2f : Eliminating loops and conditionals
elf : Extending LaC funs
ssa : Establishing static single assignment form

tc | 6 : Running type inference system
esp : Enforcing Specializations

28

sossk : Specialization Oracle for Static Shape Knowledge
ti : Running type inference system
etv : Eliminating Type Variables
ebt : Eliminating Bottom Types
swr : Splitting Wrappers

exp | 7 : Processing exports
exp : Exporting symbols
dfr : Removing dead functions
ser : Serializing syntax tree
rgd : Removing generic function definitions
iif : Restoring bodies of imported inline functions

unq | 8 : Checking uniqueness property of objects
cua : Checking uniqueness annotations
cuq : Checking uniqueness

cwc | 9 : Creating Wrapper Code and Eliminating User-Defined Types
cwb : Creating Wrapper Bodies
l2f : Eliminating conditionals in wrapper code
ssa : Establishing static single assignment form in wrapper code
dfc : Trying to dispatch functions statically
eudt : Eliminating User-Defined Types
icc : Inserting Conformity Checks
ti : Running type inference system
etv : Eliminating Type Variables
ebt : Eliminating Bottom Types

ewl | 10 : Enhancing with-loops
accu : Introducing explicit accumulators
adp : Adding default partitions
wlpg : Generating full with-loop partitions

opt | 11 : Running SAC optimizations
dfr : Removing dead functions
inl : Applying function inlining
dfr2 : Removing dead functions
dcr : Removing dead code
lir : Applying loop invariant removal
isaa1 : Inserting symbolic array attributes
esaa1 : Eliminating symbolic array attributes
saadcr : Removing dead code (after SAA cycle 1)
glf : Grouping local functions
cyc : Optimization cycle

cse : Applying common subexpression elimination (fun based)
ili : Inferring loop invariant variables (fun based)
tup : Applying type upgrade (fun based)
etv : Eliminating Type Variables (fun based)
ebt : Eliminating Bottom Types (fun based)
dfc : Applying function call dispatch (fun based)
inl : Applying inlining (fun based)
wlpr : Applying with-loop propagation (fun based)
cf : Applying constant folding (fun based)

A.1 Example: TVD Solver for 2D Shock-Tube Problem 29

cvp : Propagating constants and variables (fun based)
wlpg : Generating full with-loop partitions (fun based)
wlsimp : Simplifying with-loops (fun based)
cwle : Eliminate copy with-loops (fun based)
wli : Inferring foldable with-loops (fun based)
wlf : Applying with-loop folding (fun based)
wlfssa : Restoring SSA form after with-loop folding (fun based)
shwlc : Activating display of WL-Cost information (fun based)
unshwlc : Deactivating display of WL-Cost information (fun based)
dcr : Applying dead code removal (fun based)
wls : Applying with-loop scalarization (fun based)
prfunr : Applying prf unrolling (fun based)
lur : Applying loop unrolling (fun based)
lurssa : Restoring SSA form after loop unrolling (fun based)
wlur : Applying withloop unrolling (fun based)
wlurssa : Restoring SSA form after withloop unrolling (fun based)
linl : Inlining degenerated LaC functions (fun based)
wlir : Applying with-loop invariant removal (fun based)
etc : Eliminating typeconv primitives (fun based)
esd : Eliminating subtraction and division operators (fun based)
as : Arithmetic Simplification (fun based)
al : Applying associative law (fun based)
dl : Applying distributive law (fun based)
uesd : Reintroducing subtraction and division operators (fun based)
dcr2 : Applying dead code removal (fun based)
sisi : Simplifying function signatures
lof : Lifting optimization flags

scyc : Type stabilization cycle
tup : Applying type upgrade (fun based)
etv : Eliminating Type Variables (fun based)
ebt : Eliminating Bottom Types (fun based)
dfc : Applying function call dispatch (fun based)
lof : Lifting optimization flags

uglf : Ungrouping local functions
ls : Applying Loop Scalarization
lir2 : Applying loop invariant removal
dfr3 : Removing dead functions
flt : Flattening with-loop generators
ivext : Inserting index vector extrema
dcr2 : Applying dead code removal again
isaa2 : Inserting symbolic array attributes
saacyc : Symbolic array attribute cycle 2

prfunr : Applying prf unrolling
tup : Applying type upgrade
etv : Eliminating type variables
ebt : Eliminating bottom types
cf : Applying constant folding
cse : Eliminating common subexpressions
cvp : Propagating constants and variables
wlpg : Generating full with-loop partitions
wlsimp : Simplifying with-loops
ivexp : Propagating index vector extrema
swlfi : Inferring symbolically foldable with-loops

30

swlf : Applying symbolic with-loop folding
dcr : Removing dead code

tup : Running final type inference
etv : Eliminating type variables
ebt : Eliminating bottom types
wlfs : Applying with-loop fusion
wlfscse : Eliminating common subexpressions after fusion
wlfsdcr : Removing dead code after fusion
wlpg2 : Generating full with-loop partitions
wrci : Inferencing with-loop reuse candidates
wlidx : Annoting offset variable at with-loops
ivexc : Cleaning up index vector extrema
scc : Stripping conformity checks and dataflow guards
ivesplit : Eliminating index vectors (split selections)
ivecvp : Propagating constants and variables (for IVE)
ivecse : Eliminating common subexpression (for IVE)
iveras : Eliminating index vectors (reuse WL-offsets and scalarize)
wlflt : Trying to flatten multi-dimensional withloops
esaa2 : Eliminating symbolic array attributes
lir3 : Applying loop invariant removal
ufl : Unflattening WL generator
dcr3 : Removing dead code
wllom : Withloop lock optimization marking
wllos : Withloop lock optimization shifting
fdi : Freeing dispatch information
pfap : Profiling function applications
stat : Displaying optimisation statistics

wlt | 12 : Transforming with-loop representation
ussa : Converting from SSA form
f2l : Reintroducing loops and conditionals
linl : Inlining LaC functions
wltr : Transforming with-loop representation
l2f : Eliminating loops and conditionals
ssa : Establishing static single assignment form
wlsd : Splitting withloops by dimensions
cvp : Propagating constants and variables
dcr : Removing dead code
acuwl : Annotate CUDA withloops
cutycv : CUDA type conversion

mt3 | 13 : Running 3rd generation multithreading
tem : Tagging execution modes
crwiw : Creating with in with
pem : Propagating execution modes
cdfg : Creating data flow graph
asmra : Rearringing assignments
crece : Creating execution mode cells
cegro : Extending execution mode cells
repfun : Replicating functions
mtdfr : Removing superfluous functions
concel : Consolidating execution mode cells
abort : Aborting MT3 compilation

A.1 Example: TVD Solver for 2D Shock-Tube Problem 31

mem | 14 : Introducing memory management instructions
simd : SIMD inference
asd : AUD/SCL distinction
copy : Making copy operations explicit
racc : Removing alias results from conformity checks
alloc : Introducing explicit allocation statements
dcr : Removing dead code
rci : Inferring reuse candidates
shal : Activating display of alias information
ia : Interface aliasing analysis
lro : Applying loop reuse optimization
aa : Aliasing analysis
srce : Removing non-local reuse-candidates
frc : Removing invalid reuse candidates
sr : Static reuse
rb : Introducing reuse branches
ipc : Identifying in-place updates
dr : Exploiting data reuse
dcr2 : Removing dead code again
unshal : Deactivating display of alias information
rc : Running reference count inference
rcm : Reducing reference counting instructions
rco : Optimizing reference counting instructions
re : Removing reuse instructions

ussa | 15 : Converting from static single assignment form
ussa : Converting from SSA form
f2l : Reintroducing loops and conditionals
linl : Inlining LaC functions
rec : Removing external code
rera : Restoring reference arguments
reso : Restoring global objects

mt | 16 : Running automatic parallelisation
mtcm : Running multithreading cost model
mtstf : Creating MT and ST functions
mtspmdf : Creating SPMD functions
mtas : Annotating scheduling information
sspmdls : Applying SPMD linksign pragma

pc | 17 : Preparing C code generation
cuknl : Create Cuda kernel functions
lw3 : Lifting With-Loop bodies into threads
mmv : Marking memval identifiers
dst : Computing static thread mapping
sls : Applying linksign pragma
moi : Manage object initialisers
rcs : Resolving code sharing in With-Loops
fpc : Reorganising function prototypes
tcp : Applying type conversions
mng : Mark NoOp Grids
rid : Consistently renaming identifiers

32

cg | 18 : Generating Code
tp : Tag preparation
ctr : Converting to old type representation
cpl : Creating intermediate code macros
prt : Generating C file(s)
frtr : De-allocating syntax tree representation

icc | 19 : Creating binary code
hdep : Handling dependencies
ivcc : Invoking C compiler
crl : Creating SAC library

PRINTING OPTIONS:

-print [adv]+
Add internal AST information as comments to the program output.
The following flags are supported:

a: Print all (same as dv).
d: Print specialization demand.
v: Print avis information.

TYPE INFERENCE OPTIONS:

-specmode <strat> Specify function specialization strategy:
aks: try to infer all shapes statically,
akd: try to infer all ranks statically,
aud: do not specialize at all.
(default: aks)

-maxspec <n> Individual functions will be specialized at most <n> times.
(default: 20)

OPTIMIZATION OPTIONS:

-enforceIEEE Treat floating point arithmetic as defined in the IEEE-754
standard. In particular, this means

- disable some algebraic optimizations,
- disable segmentation and tiling of fold-with-loops,
- disable parallel execution of fold-with-loops.

Currently implemented for:
- associative law optimization,
- segmentation and tiling of fold-with-loops.

-noreuse Disable reuse inference in emm.

-iveo <n> Enable or disable certain index vector optimisations
<n> is a bitmask consisting of the following bits:

1: enable the usage of withloop offsets where possible
2: scalarise vect2offset operations where possible

A.1 Example: TVD Solver for 2D Shock-Tube Problem 33

3: try to optimise computations on index vectors
4: try to reuse offsets once computed

The iveo option to for testing, and is to be removed.

-ssaiv This option, if enabled, forces all with-loop generator
variables to be unique (SSA form). (This is
a prerequisite for MINVAL/MAXVAL work.)

If disabled (the default setting), all with-loop
generators use the same index vector variables.

-extrema This option, if enabled, allows the compiler to
use optimizations based on index variable extrema;
i.e., the minimum and maximum value that index variables
may take on. This option requires that -ssaiv is also enabled.

-glf With this option local functions (loop, cond, ...) are
grouped together in a local spine during the optimisation
This is an internal option only.

-no <opt> Disable optimization technique <opt>.

-do <opt> Enable optimization technique <opt>.

The following optimization techniques are currently supported:

(A leading * identifies optimization enabled by default.)

* ls loop scalarization
* dcr dead code removal
* cf constant folding
* lir loop invariant removal
* inl function inlining
* lur loop unrolling
* wlur with-loop unrolling
* prfunr prf unrolling

lus loop unswitching
* cse common subexpression elimination
* dfr dead function removal

wlt with-loop transformation
* wlf with-loop folding

swlf symbolic with-loop folding
* ive index vector elimination (requires -dosaa)

wlflt withloop flattening
ae array elimination

* dl distributive law
* rco reference count optimization
* uip update-in-place analysis
* dr data reuse
* ipc in-place computation

tsi with-loop tile size inference
tsp with-loop tile size pragmas

34

* wlpg with-loop partition generation
* cvp constant and variable propagation
* srf static reuse / static free

phm private heap management
aps arena preselection (requires -dophm)
dpa descriptor preallocation (requires -dophm)
msca memory size cache adjustment (requires -dophm)
ap array padding
apl array placement

* wls with-loop scalarization
* al associative law
* as arithmetic simplification
* etc typeconv elimination

sp selection propagation
* wlsimp with-loop simplification
* cwle copy with-loop elimination

wlfs with-loop fusion
* lro loop reuse optimization
* tup type upgrade

sisi signature simplification
* sde subtraction / division elimination
* wlprop with-loop propagation
* saa use symbolic array attributes
* cyc run optimization cycle
* scyc run stabilization cycle

wllo run with-loop lock optimization

NOTE:
-no opt disables all optimizations at once.
-do opt enables all optimizations at once.

NOTE:
Upper case letters may be used to indicate optimization techniques.

NOTE:
Command line arguments are evaluated from left to right, i.e.,
"-no opt -do inl" disables all optimizations except for function inlining.

NOTE:
Some of the optimization techniques are parameterized by additional side
conditions. They are controlled by the following options:

-maxoptcyc <n> Repeat optimization cycle max <n> times. After <n> cycles
all optimisations except for type upgrade and function dispatch
are disabled.

(default: 10)

-maxrecinl <n> Inline recursive function applications at most <n> times.
(default: 0)

-maxlur <n> Unroll loops having at most <n> iterations.
(default: 2)

A.1 Example: TVD Solver for 2D Shock-Tube Problem 35

-maxwlur <n> Unroll with-loops with at most <n> elements generator set
size.

(default: 9)

-maxae <n> Try to eliminate arrays with at most <n> elements.
(default: 4)

-initmheap <n> At program startup initially request <n> KB of heap memory
for master thread.

(default: 1024)

-initwheap <n> At program startup initially request <n> KB of heap memory
for each worker thread.

(default: 64)

-inituheap <n> At program startup initially request <n> KB of heap memory
for usage by all threads.

(default: 0)

-aplimit <n> Set the array padding resource allocation overhead limit
to <n> %.

(default: 10)

-apdiag Print additional information for array padding to file
"<outfile>.ap", where <outfile> is the name specified via
the "-o" option.

-apdiagsize <n> Limit the amount of information written to the diagnostic
output file created via the -apdiag option to approximately
<n> lines.

(default: 20000)

-wls_aggressive Set WLS optimization level to aggressive.
WARNING:
Aggressive with-loop scalarization may have the opposite
effect as with-loop invariant removal and cause duplication
of code execution.

-maxwls Set the maximum number of inner with-loop elements for which
aggressive behaviour will be used even if -wls_aggressive is
not given. (default: 1)

-nofoldfusion Eliminate fusion of with-loops with fold operator.

-maxnewgens <n> Set the maximum number of new created generators while
intersection of generatorsets from two with-loops in
with-loop fusion to <n>.

(default: 100)

-sigspec <strat> Specify strategy for specialization of function sigantures:
akv: try to infer all values statically,
aks: try to infer all shapes statically,
akd: try to infer all ranks statically,

36

aud: do not specialize at all.
(default: aks)

MULTI-THREAD OPTIONS:

-mt Compile program for multi-threaded execution,
e.g. implicitly parallelize the code for non-sequential
execution on shared memory multiprocessors.

NOTE:
The number of threads to be used can either be specified
statically using the option "-numthreads" or dynamically
upon application startup using the generic command line
option "-mt <n>".

-mtmode <n> Enable a explicit organization scheme for multi-threaded program
execution.
Legal values:

1: with thread creation/termination
2: with start/stop barriers
3: with magical new techniques, WARNING: UNDER CONSTRUCTION!!!
(default: 2)

-numthreads <n> Specify at compile time the exact number of threads to be
used for parallel execution.

-maxthreads <n> Specify at compile time only an upper bound on the number
of threads to be used for parallel execution when exact
number is determined at runtime.

(default: 32)

-nofoldparallel Disable parallelization of fold with-loops.

-maxsync <n> Specify maximum number of fold with-loops to be combined
into a single synchronisation block.
Legal values:

-1: maximum number needed (mechanically infered).
0: no fold-with-loops are allowed.

(This implies that fold-with-loops are not executed
in parallel.)

>0: maximum number set to <n>.
(default: -1)

-minmtsize <n> Specify minimum generator set size for parallel execution
of with-loops.

(default: 250)

-maxrepsize <n> Specify maximum size for arrays to be replicated as
private data of multiple threads.

(default: 250)
Option applies to "-mtn" style parallelization only.

A.1 Example: TVD Solver for 2D Shock-Tube Problem 37

MUTC OPTIONS:

-mutc_fun_threads Convert all functions to thread functions and use
singleton creates

-mutc_macros Use mutc macro abstraction interface

BACKEND OPTIONS:

-minarrayrep <class>
Specify the minimum array representation class used:

s: use all (SCL, AKS, AKD, AUD) representations,
d: use SCL, AKD, AUD representations only,
+: use SCL, AUD representations only,
*: use AUD representation only.

(default: s)

GENERAL DEBUG OPTIONS:

-d nocleanup Do not remove temporary files and directories.
-d syscall Show all system calls during compilation.
-d cccall Generate shell script ".sac2c" that contains C compiler

invocation.
This implies option "-d nocleanup".

INTERNAL DEBUG OPTIONS:

-d treecheck Check syntax tree for consistency with xml specification.
-d memcheck Check syntax tree for memory consistency.
-d sancheck Check syntax tree for structural consistency.
-d nolacinline Do not inline loop and conditional functions.
-d efence Link executable with ElectricFence (malloc debugger).

INTERNAL OPTIONS FOR FRED FISH’S DBUG:

-# t Display trace information.
Each function entry and exit during program execution is
printed on the screen.

-# d Display debug output information.
Each DBUG_PRINT macro in the code will be executed.
Each DBUG_EXECUTE macro in the code will be executed.

-# d,<str> Restrict "-# d" option to DBUG_PRINT / DBUG_EXECUTE macros
which are tagged with the string <str> (no quotes).

-# <f>/<t>/<o> Restrict the effect of any Fred Fish DBUG package option <o>

38

to the range <f> to <t> of sac2c compiler phases.
(default: <f> = first compiler phase,

<t> = last compiler phase.)
All kinds of phases can be specified using a syntax
analogous to that of the -b option.

RUNTIME CHECK OPTIONS:

-ecc Insert explicit conformity checks at compile time.

-check [atbmeh]+
Incorporate runtime checks into executable program.
The following flags are supported:

a: Incorporate all available runtime checks.
c: Perform conformity checks.
t: Check assignments for type violations.
b: Check array accesses for boundary violations.
m: Check success of memory allocations.
e: Check errno variable upon applications of

external functions.
h: Use diagnostic heap manager.

RUNTIME TRACE OPTIONS:

-trace [amrfpwstc]+
Incorporate trace output generation into executable program.
The following flags are supported:

a: Trace all (same as mrfpowt).
m: Trace memory operations.
r: Trace reference counting operations.
f: Trace user-defined function calls.
p: Trace primitive function calls.
w: Trace with-loop execution.
s: Trace array accesses.
t: Trace multi-threading specific operations.
c: Trace runtime enviroment init/exit when

using SAC libraries in C programs.

-utrace
Introduce user tracing calls.

RUNTIME PROFILING OPTIONS:

-profile [afilw]+
Incorporate profiling analysis into executable program.

a: Analyse all (same as filw).
f: Analyse time spent in non-inline functions.
i: Analyse time spent in inline functions.
l: Analyse time spent in library functions.
w: Analyse time spent in with-loops.

A.1 Example: TVD Solver for 2D Shock-Tube Problem 39

CACHE SIMULATION OPTIONS:

-cs Enable runtime cache simulation.

-csdefaults [sagbifp]+
This option sets default parameters for cache simulation.
These settings may be overridden when starting the analysis
of an application program:

s: simple cache simulation,
a: advanced cache simulation,
g: global cache simulation,
b: cache simulation on selected blocks,
i: immediate analysis of memory access data,
f: storage of memory access data in file,
p: piping of memory access data to concurrently running

analyser process.
The default simulation parameters are "sgp".

-cshost <name> This option specifies the host machine to run the additional
analyser process on when doing piped cache simulation.
This is very useful for single processor machines because
the rather limited buffer size of the pipe determines the
synchronisation distance of the two processes, i.e. the
application process and the analysis process. This results
in very frequent context switches when both processes are
run on the same processor, and consequently, degrades the
performance by orders of magnitude. So, when doing piped
cache simulation always be sure to do so either on a
multiprocessor or specify a different machine to run the
analyser process on. However, this only defines a default
which may be overridden by using this option when starting
the compiled application program.

-csfile <name> This option specifies a default file where to write the
memory access trace when performing cache simulation via
a file. This default may be overridden by using this option
when starting the compiled application program.
The general default name is "<executable_name>.cs".

-csdir <name> This option specifies a default directory where to write
the memory access trace file when performing cache
simulation via a file. This default may be overridden by
using this option when starting the compiled application
program.
The general default directory is the tmp directory specified
in your sac2crc file.

CACHE SIMULATION FEATURES:

Simple cache simulation only counts cache hits and cache misses while
advanced cache simulation additionally classifies cache misses into

40

cold start, cross interference, self interference, and invalidation
misses.

Simulation results may be presented for the entire program run or more
specifically for any code block marked by the following pragma:

#pragma cachesim [tag]
The optional tag allows to distinguish between the simulation results
for various code blocks. The tag must be a string.

Memory accesses may be evaluated with respect to their cache behaviour
either immediately within the application process, stored in a file,
or they may be piped to a concurrently running analyser process.
Whereas immediate analysis usually is the fastest alternative,
results, in particular for advanced analysis, are often inaccurate due
to changes in the memory layout caused by the analyser. If you choose
to write memory accesses to a file, beware that even for small programs
to be analysed the amount of data may be quite large. However, once a
memory trace file exists, it can be used to simulate different cache
configurations without repeatedly running the application program
itself. The simulation tool for memory access trace files is called
’csima’ and resides in the bin directory of your SAC installation.

These default cache simulation parameters may be overridden when
invoking the application program to be analysed by using the generic
command line option

-cs [sagbifp]+
where the various flags have the same meaning as described for the
"-csdefaults" compiler option.

Cache parameters for up to 3 levels of caches may be provided as target
specification in the sac2crc file. However, these only serve as a
default cache specification which may well be altered when running the
compiled SAC program with cache simulation enabled. This can be done
using the following command line options:

-cs[123] <size>[/<line size>[/<assoc>[/<write miss policy>]]].
The cache size must be given in KBytes, the cache line size in
Bytes. A cache size of 0 KB disables the corresponding cache level
completely regardless of any other setting.
Write miss policies are specified by a single letter:

d: default (fetch on write)
f: fetch on write
v: write validate
a: write around

LIBRARY OPTIONS:

-linksetsize <n> Specify how many compiled C functions are stored within
a single C source file for further compilation and linking.
A large number here means that potentially many functions
need to be linked to an executable that are actually never
called. However, setting the linksetsize to 1 considerably
slows down the compilation of large SAC modules/classes

A.1 Example: TVD Solver for 2D Shock-Tube Problem 41

(default: 10)

NOTE:
A linksetsize of 0 means all functions are stored in a
a single file.

-genlib <lang> Specify library format when compiling SAC module/class
implementations.
Supported values for <lang> are:
sac: Generate SAC library file (default).
c: Generate C object and header files.

NOTE:
Be careful to use same options for privat heap management
(PHM) and profiling for compilation of all modules/classes
you are going to link together to a single executable.

NOTE:
Multithreading is not yet available for C libraries.

-noprelude Do not load the standard prelude library ‘sacprelude’.

C-COMPILER OPTIONS:

-g Include debug information into object code.

-O <n> Specify the C compiler level of optimization.
0: no C compiler optimizations.
1: minor C compiler optimizations.
2: medium C compiler optimizations.
3: full C compiler optimizations.

(default: 0)

NOTE:
The actual effects of these options are specific to the
C compiler used for code generation. Both the choice of
a C compiler as well as the mapping of these generic
options to compiler-specific optimization options are
are determined via the sac2crc configuration file.
For details concerning sac2crc files see below under
"customization".

CUSTOMIZATION OPTIONS:

-target <name> Specify a particular compilation target.
Compilation targets are used to customize sac2c for
various target architectures, operating systems, and C
compilers.
The target description is either read from the
installation specific file $SACBASE/runtime/sac2crc or
from a file named .sac2crc within the user’s home

42

directory.

-B <name> Selects one of the different backends to use. Currently
sac2c supports the following backends:

c99 default backend that produces c99 code
mutc backend for the mutc extension to C

ENVIRONMENT VARIABLES:

The following environment variables are used by the SAC compiler suite:

SACBASE Base directory of SAC standard lib installation.
SAC2CBASE Base directory of SAC installation.

AUTHORS:

The following people contributed their time and mind to create the
SAC compiler suite (roughly in order of entering the project):

Sven-Bodo Scholz
Henning Wolf
Arne Sievers
Clemens Grelck
Dietmar Kreye
Soeren Schwartz
Bjoern Schierau
Helge Ernst
Jan-Hendrik Schoeler
Nico Marcussen-Wulff
Markus Bradtke
Borg Enders
Kai Trojahner
Michael Werner
Stephan Herhut
Karsten Hinckfuss
Steffen Kuthe
Jan-Henrik Baumgarten
Robert Bernecky
Theo van Klaveren
Florian Buether
Torben Gerhards
Carl A Joslin

CONTACT:

WWW: http://www.sac-home.org/
E-Mail: info@sac-home.org

A.1 Example: TVD Solver for 2D Shock-Tube Problem 43

BUGS:

Bugs?? We????

SAC is a research project!

SAC tools are platforms for scientific research rather than
"products" for end users. Although we try to do our very best,
you may well run into a compiler bug. So, we are happy to receive
your bug reports (Well, not really "happy", but ...).

44 REFERENCES

References

[1] Robert Bernecky, Stephan Herhut, Sven-Bodo Scholz, Kai Trojahner, Clemens Grelck, and
Alex Shafarenko. Index vector elimination — making index vectors affordable. In Zoltán
Horváth, Viktória Zsók, and Andrew Butterfield, editors, Implementation and Application of
Functional Languages, volume 4449/2007 of Lecture Notes in Computer Science, pages 19–36,
Berlin / Heidelberg, 2007. Springer.

[2] C. Grelck, K. Hinkfuß, and S.-B. Scholz. With-Loop Fusion for Data Locality and Parallelism.
In Frank Huch A. Butterfield, Clemens Grelck, editor, Implementation and Application of
Functional Languages, 17th INternational Workshop, IFL’05, Selected Papers, volume 4015 of
LNCS, pages 178–195. Springer, 2006. to appear.

[3] C. Grelck, D. Kreye, and S.-B. Scholz. On Code Generation for Multi-Generator WITH-Loops
in SAC. In P. Koopman and C. Clack, editors, Proc. of the 11th International Workshop on
Implementation of Functional Languages (IFL’99), Lochem, The Netherlands, Selected Papers,
volume 1868 of LNCS, pages 77–95. Springer, 2000.

[4] Clemens Grelck, Stephan Herhut, Chris Jesshope, Carl Joslin, Mike Lankamp, Sven-Bodo
Scholz, and Alex Shafarenko. Compiling the Functional Data-Parallel Language sac for Mi-
crogrids of Self-Adaptive Virtual Processors. In 14th Workshop on Compilers for Parallel
Computing (CPC’09), IBM Research Center, Zurich, Switzerland, 2009.

[5] Stephan Herhut, Carl Joslin, and Sven-Bodo Scholz. Compiling the functional data-parallel
language sac for the self-adaptive virtual processor architecture. Technical Report 482, School
of Computer Science, University of Hertfordshire, 2008.

[6] Chris R. Jesshope. mutc - an intermediate language for programming chip multiprocessors. In
Asia-Pacific Computer Systems Architecture Conference, pages 147–160, 2006.

[7] Alexei Kudryavtsev, Daniel Rolls, Sven-Bodo Scholz, and Alex Shafarenko. Numerical simu-
lations of unsteady shock wave interactions using SAC and Fortran-90. In 10th International
Conference on Parallel Computing Technologies. accepted, 2009.

[8] S.-B. Scholz. With-loop-folding in sac–Condensing Consecutive Array Operations. In C. Clack,
K.Hammond, and T. Davie, editors, Implementation of Functional Languages, 9th International
Workshop, IFL’97, St. Andrews, Scotland, UK, September 1997, Selected Papers, volume 1467
of LNCS, pages 72–92. Springer, 1998.

[9] S.-B. Scholz. Single Assignment C — efficient support for high-level array operations in a
functional setting. Journal of Functional Programming, 13(6):1005–1059, 2003.

[10] M. W. van Tol, C. R. Jesshope, M. Lankamp, and S. Polstra. An implementation of the sane
virtual processor using posix threads. J. Syst. Archit., 55(3):162–169, 2009.

