
FP7-215216

Architecture Paradigms and Programming Languages for Efficient programming
of multiple COREs

Specific Targeted Research Project (STReP) THEME ICT-1-3.4

Data Parallelism and Functional Parallelism on the

Microgrid using Single Assignement C

Deliverable D4.4, Issue 1.0

Workpackage WP4

Author(s): Sven-Bodo Scholz, Stephan Herhut, Carl Joslin
Reviewer(s): Chris Jesshope
WP/Task No.: WP4 Number of pages: 19
Issue date: 2011-07-31 Dissemination level: Public

Purpose: In this deliverable we report on the outcome of our efforts to combine our previous
work on SaC compilation systems for data-parallel and functional concurrency on the Microgrid
into a single joint back-end. We give an overview of the challenges we faced and the approaches
we have developed. In particular we focus on resource management and concurrency mapping
techniques. Furthermore, we give a brief outlook on future research directions.
Results: In the context of resource management, we have implemented novel heap management
and liveness analysis techniques. We show that solutions that are viable for either data-parallel
or function concurrency in isolation are not applicable in a joint setting. We show how our
previous approaches have to be extended to ensure scalability and runtime performance in a
combined setting. For concurrency mapping, we have evaluated multiple schemes for functional
concurrency, none of which leads to satisfying results in the general case. However, we have
learned valuable lessons and do have a clearer understanding now of how a successful mapping
strategy might look like.
Conclusion: Handling functional concurrency efficiently is complex and poses many challenges
not present in the data-parallel case. Yet, we have developed runtime solutions that allow us
to efficiently execute programs that contain both. We have developed novel techniques tailored
not only to the Microgrid but massively parallel architectures in general. Some questions, in
particular means to find an efficient, scalable, yet adaptive mapping of functional concurrency
to hardware resources, require further research.

Approved by the project coordinator: Yes Date of delivery to the EC: 2011-07-31

Document history

When Who Comments
2010/12/3 Sven-Bodo Scholz Initial version
2010/12/20 Stephan Herhut added section on scheduling issues
2010/2/14 Carl Joslin added section on new reference counting
2010/6/17 Sven-Bodo Scholz added Quicksort results and discussion
2010/7/27 Sven-Bodo Scholz added FFT results and discussion

Project co-funded by the European Commission within the
7th Framework Programme (2007-11).

Table of Contents

1 Introduction 1

2 Combining Functional Paralllism and Data Parallelism 2

3 Managing Resource Mapping Strategies 3

4 Reference Counting Strategies For Combined FP and DP 10

5 Implementation Status 17

6 Conclusions 18

1

1 Introduction

From a language designer and compiler implementer’s perspective, the Microgrid architecture [2] is
a radical detour from existing, well understood hardware designs. Other than well studied multi-
core processors and SMP machines, the Microgrid puts concurrent execution at the heart of its
performance promise. The architectural design is geared towards parallel execution, and little of
the precious silicon has been spent on sequential performance.

A similar point can be made for current, throughput oriented hardware like the Cell’s streaming
processors or AMD and NVIDIA’s GPGPU offerings. Although these processors too are designed
with massively parallel execution in mind, their execution model is rather restricted. In either case,
basically only SIMD style executions are permitted. Other than these approaches, the Microgrid
promises a relaxed, fine grained concurrency model, enabling a liberal mapping of a program’s
inherent concurrency to the underlying hardware.

As often, with liberty comes the responsibility for one’s actions. The main challenges faced
during the Apple-CORE project and, as a result, the solutions we propose, deal to a lesser extend
with exhibiting concurrency in the first place. Instead, we have spend most of our effort on respon-
sible concurrency. Much like citizens in an increasingly overpopulated world, threads in a massively
parallel architecture like the Microgrid contend heavily for resources. Ensuring that resources are
appropriately shared to the benefit of the whole system is a hard problem. Keeping management
overheads down, too, adds further complication. Our work in the context of Apple-CORE has
focussed on finding answers to both.

To keep the project manageable, we have early on decided to address data-parallel concurrency
and functional concurrency, often referred to as task parallelism, as well, separately. On a conceptual
level, data-parallel and functional concurrency seem similar. Yet, the way language constructs of
a high-level language like SaC [12] are mapped to the low-level create operation in SL [10] is
mostly orthogonal. Data-parallel operations basically lead to a nesting of few create operations
that each spawn many threads [4] whereas functional concurrency typically results in many, deeply
nested create operations that spawn few threads. As a result, the compilation technology involved
is rather specific to the kind of concurrency targeted. For instance, the allocation strategies to
map the available concurrency of the algorithm to the bounded concurrency resources provided
by the hardware differ significantly. Whereas data-parallel concurrency is usually constrained by
the number of available hardware threads, functional concurrency often suffers from exhaustion of
thread families. Code generation has to take these effects into account.

Even for aspects where a solution was not expected to depend on the kind of concurrency, a
staged approach seemed reasonable. For example in heap management, although the structure of the
exhibited concurrency vastly differs between data-parallel and functional concurrency, the essential
problem of safe concurrent access to a shared heap remains the same. Thus, we anticipated to reuse
a single heap manager in either case. Yet, our experience has shown that subtle differences in the
lifetime of threads and data can have a huge effect. As we have reported in [6], we had to make
a significant investment into an extended, fully thread safe SaC runtime system. In particular,
we have developed an asynchronous, distributed heap manager and a novel asynchronous non-
deferred reference counting technique [8]. The automated extraction of functional concurrency
itself, however, was left for the final year of Apple-CORE.

First experiments with different mapping strategies quickly unveiled the complexity of the task
at hands. The mapping of extracted concurrency to the hardware generally is essential for good
runtime performance on the Microgrid. For functional concurrency, however, the existing mapping
strategies implemented by the hardware scheduler of the Microgrid do not suffice and much finer
control in software is required. We report on our findings in Section 3.

Another key issue that we have addressed during the last year of APPLE-Core was the integra-
tion of our work on functional and data-parallel concurrency. We found that supporting functional
concurrency inside of data-parallel sections and vice versa puts significant strain on the runtime
system. In particular, reference counting based non-deferred garbage collections turned out to be
a major constraint on scalability [8]. Section 4 presents our refined approach that now scales well

2 2 COMBINING FUNCTIONAL PARALLLISM AND DATA PARALLELISM

even in the context of mixed concurrency.
We close this report with an overview of the implementation status in Section 5 and final

conclusions in Section 6.

2 Combining Functional Paralllism and Data Parallelism

Before we detail the various improvements during the final year of Apple-CORE, we first give a
short recap of the implementation of functional and data-parallel concurrency in SaC. Essentially,
we have focussed on three key aspects:

1. mapping a program’s inherent concurrency to the Microgrid hardware,

2. managing a massively shared heap, and

3. efficient non-deferred reference counting.

The first aspect, finding appropriate mappings of concurrency to hardware resources, so far was
researched mainly for data-parallel workloads. We early on found that mappings with maximum
width and minimum depth made optimal use of the Microgrid’s resources [4]. Width in this context
refers to the number of threads issued by each single create statement whereas depth refers to
the maximum nesting of create operations. A sufficiently large width ensures good use of the
hardware threads on a Microgrid. Furthermore, resource usage due to a mapping’s width can be
well controlled. The depth, on the other hand, directly relates to the number of thread families
required. This resource, however, is usually scarce. We have implemented a range of optimisations
to reshape the concurrency mapping towards the wide and shallow optimum [13].

For the second aspect, managing a massively shared heap, we have proposed a range of ap-
proaches tailored to specific usage scenarios. In the data-parallel setting, we were able to exploit
static knowledge about the lifetime of threads and data to implement a very lightweight heap man-
agement strategy. Essentially we exploit the fact that the lifetime of local data is often aligned
with the allocating thread’s lifetime. Thread local stacks [7] use the hardware managed thread local
storage on the Microgrid to store such short-lived local data structures. Like for function stacks,
allocation boils down to a pointer increment. At the end of a thread’s lifetime, the memory is
automatically reclaimed by the hardware.

In the setting of functional concurrency, however, the alignment of lifetimes can no longer
be guaranteed. Thus, thread local stacks do not apply. As an alternative, we have developed
a distributed, lock-free heap manager that allows cheap local allocation and uses a lightweight
garbage collection scheme to defer free operations until they are safe to perform [13]. Other than
thread-local stacks, this approach uses fully software controlled memory invalidation, a feature that
was specifically added to the Microgrid architecture. This is yet another example of successful
hardware/software co-design in the context of Apple-CORE.

To combine functional and data-parallel concurrency, we have devised a hybrid scheme that
supports both thread local stacks and the distributed heap manager at the same time. However, as
our distributed heap manager requires software managed invalidation of memory, the hybrid scheme
simulates hardware invalidation of thread local stacks in software. Although this introduces a slight
overhead, the characteristics and runtime behaviour of each component of the hybrid approach
remains largely unchanged.

The third and last aspect we have examined is the implementation of efficient reference counting
schemes for non-deferred garbage collection on a massively parallel architecture like the Microgrid.
We provide an in depth discussion of the various schemes in Section 4. For the data-parallel scenario,
which generally exhibits only moderate reference counting loads, we have devised a distributed
scheme that exploits the latency hiding capabilities of the Microgrid to perform reference counting
operations concurrently with the actual workload [8]. The key insight that lead to this novel
approach is that a certain amount of imprecision of liveness information can be tolerated even in
non-deferred garbage collection. Most heap management operations do not require fully up-to-date

3

liveness information. Only update-in-place optimisations, which are critical in functional languages
like SaC [5], require this level of precision. We exploit this fact to offload reference counting
operations to a dedicated hardware resource by means of asynchronous message passing. Only for
update-in-place operations, we enforce a consistent global state.

The above list of aspects does not include automated concurrency extraction from program texts.
We have left the extraction of concurrency from the program source mainly explicit. In the case of
data-parallel concurrency, the programming model of SaC already encourages the programmer to
write applications in a data-parallel fashion. Thus, programs implemented in SaC usually exhibit
sufficient levels of explicit data-parallelism to yield efficient utilisation of the Microgrid’s hardware
resources. Even though the parallelism is explicit in the program text, the programmer hardly
notices. From a programmer’s perspective, SaC’s data-parallel construct, the with-loop, is just a
loop construct and often its uses are well hidden in SaC’s standard library.

The integration of functional concurrency uses a different strategy. Ultimately, we hope to infer
suitable function applications from the control flow. Currently, to aid experimentation, we use
explicit annotations. Other than the data-parallel case, these annotations solely serve the purpose
of expressing concurrency and are not deeply embedded into SaC’s programming model. A detailed
description can be found in [6].

3 Managing Resource Mapping Strategies

A key challenge in mapping concurrent programs to the Microgrid is finding an appropriate mapping
of the concurrency as exhibited by the program to the hardware resources. In the case of data-
parallel concurrency, we leave most of the mapping and scheduling to the hardware. In particular, we
do not assign computations to specific cores or places. This is motivated twofold. Firstly, by leaving
the exact mapping open, we ensure that the generated executables can tolerate a range of resource
constraints. These constraints can either be due to different implementations of the Microgrid with
varying concurrency resources, or due to multiple applications sharing a single host. As the hardware
and its embedded scheduler know about the specific constraints of the executing machinery, they
can adapt the program at runtime. This, of course, could be achieved by a machine specific runtime
system in software, as well. But, secondly, scheduling in hardware induces significantly less runtime
overhead. This is particularly the case for the Microgrid where thousands of threads need to be
orchestrated.

The generated SL code does, however, contain annotations that describe which threads should be
distributed globally across the entire Microgrid and which threads are intended to be executed on the
current core. If a create operation is annotated for distributed execution, the hardware scheduler
will distribute threads across all cores, beginning with the core where the create operation was
issued. For data-parallel workloads, this usually is the intended behaviour and we have found this
means of thread distribution to be sufficient. In the case of functional concurrency, however, this
scheduling strategy is not adequate.

As an example, consider the compilation of a SaC implementation of quicksort, a classical divide
and conquer style algorithm. Figure 1 shows SaC pseudo code for an implementation. As can be
seen, while the list given as argument is non-empty, it is split into two sub lists based on a pivot
element. These lists are then sorted using a recursive application of quicksort. Finally, the result
is computed as the concatenation of the two sorted sub lists. A seemingly obvious means to exploit
functional concurrency in this algorithm is to spawn both recursive descends as concurrent threads.
To this effect, we use two spawn statements in Lines 7 and 8. Each creates a new thread that will
execute the function quicksort on one of the sub lists. We will come back to the additional target
argument shortly.

Each spawn operation in SaC is mapped to a corresponding create operation in SL [6]. Con-
sequently, each recursive call to quicksort will create two hardware threads on the Microgrid. If
we were to use the same hardware scheduling as for the data-parallel case, all threads, regardless
of distribution annotations, would end up on the same core. For local create operations this is

4 3 MANAGING RESOURCE MAPPING STRATEGIES

1 function q u i c k s o r t (l i s t) :
i f empty (l i s t) :

3 return [] ;
else :

5 pivot = l i s t [0] ;
f i l t e r L , f i l t e r R = f i l t e r (l i s t , p ivot) ;

7 qsortL = spawn(target) q u i c k s o r t (f i l t e r L) ;
qsortR = spawn(target) q u i c k s o r t (f i l t e r R) ;

9 return qsortL ++ [p ivot] ++ qsortR ;

Figure 1: Pseudo code of a quick sort implementation in SaC.

obvious, as they are intended to spawn threads on the same core. In the case of distributed create
operations, this is an artefact of the chosen scheduling: Each family is spread across all cores of
the Microgrid, beginning with the core where the corresponding create operation originated. Note
that even changing this scheme to start with the core next to the current core would not be good
enough. Still, both threads spawned by one instance of quicksort would use the same core.

To overcome this limitation and still benefit from automated hardware scheduling, we have
developed a scheme that aims at balancing the created threads across the Microgrid (see FSBR
strategy in [9]). The idea is to automatically create threads at the core with the least workload.
As a dynamic measure of a core’s workload, we use the number of currently active families. As the
Microgrid consists of conceptually idependently managed cores, an implementation of this scheme
inevitably consists of two phases. In the first phase, a message is sent around the Microgrid’s ring
network to generate a snapshort of the current state of the system. In particular, we record the
number of active families for each core. In a second phase, we select the core with the least load
and send a delegation message to that core.

Compared to a traditional create, which only requires a single delegation message sent directly
to the target core, this balanced scheme produced signigicant additonal overhead. To reduce this
overhead, we have implemented a fast mode for boot strapping an empty Microgrid. If during
the initial enquiry phase we find a core that is not yet computing, we abort further traversal
of the ring and directly create the threads at that core. Still, as Figure 2 shows, the runtime
overhead of dynamic load balancing is too costly for quick sort. The runtime improvement due to
additional concurrency resources is outweighed by the increased distribution overhead due to longer
communication latencies.

To reduce the overhead due to distribution, we have implemented a second version of quick
sort that limits the exposed concurrency. This implementation is guided by the idea that, due
to the incurred overheads, distribution of small workloads is not viable. Therefore, our enhanced
implementation only spawns further threads if the remaining list to be sorted has more than 10
elements. Figure 3 shows the resulting runtimes. The algorithm now shows at least limited scaling
up to 32 cores. However, from 64 cores onwards the distribution overhead shadows gains due to
conrrent execution even for lists larger than 10 elements.

Ultimaltely, we came to the conclusion that fully automatic scheduling, although effective for
data-parallel loads, is too costly in the functional concurrency setting. As before, the lack of known
structure of the concurrency tree makes dynamic runtime approaches difficult. Predicting the
concurrency behaviour of a program is hard and, as our results show, dynamic one-fits-all solutions
are too expensive. Yet, using a fully explicit mapping approach would inhibit scalability of binary
programs across different implementations of the Micrgrid with varying numbers of processing cores.

To achieve better performance but retain scalability of binary programs, we have evaluated
an approach that compromises on both. We have extended the spawm operation in SaC by an
additional target arguments, as shown in Lines 7 and 8 of Figure 1. The target qualifier is passed
to the SL runtime layer as a hint on how to distribute the corresponding create operation. The
following targets are available:

5

Figure 2: Runtime behaviour of quick sort implementation when using the Microgrid’s hardware
scheduler (balanced) without explicit distribution annotations.

Figure 3: Runtime behaviour of our quick sort implementation with concurrency throttling when
using the Microgrid’s hardware scheduler (balanced) without explicit distribution annotations.

6 3 MANAGING RESOURCE MAPPING STRATEGIES

Figure 4: Runtime behaviour of quick sort when using the Microgrid’s hardware scheduler with
explicit distribution annotations.

NEXT N GCORE(N) use the core N hops down the ring network. If N is zero, the current
core is used.

PREV N GCORE(N) use the core N hops up the ring network. If N is zero, the current core
is used.

NEXT HALF GCORE use the core half way around the ring network.

These annotations still make no assumptions on the number of cores and thus allow the hardware
scheduler to scale binary applications to the resources available on a specific execution machinery.
Yet, they provide sufficient information to allow the scheduler to distribute work more efficiently.
Figure 4 shows the execution times of the same benchmark as in Figure 2 using different target
annotations. The first strategy we have used, current and next, only provides limited scaling. It,
however, yields better overall runtimes compared to the fully automated distribution. The limited
scaling can be explained by the under utilisation of the available processing cores. Figure 5 shows
a simulation of the expected thread distribution1 of quick sort using the current and next scheme.
As can be seen, the resulting distribution after 12 recursive descends is highly unbalanced and only
involves half of the available cores.

The prev and next scheme, which spawns the two subcomputations within each instance of
quick sort on the previous and next core on the ring, respectively, fares better. Figure 4 shows good
scaling up to 16 cores, where the runtimes even out. The simulated thread distribition if Figure 6
unveils a much improved distribution over our previous scheme. After 10 recursive descends, the
computation has been distributed across the entire Microgrid. Other than the previous distribution,
our new scheme distributes threads towards both sides of the first core. However, due to the nature
of the scheme, only every second core is being used.

Lastly, we have evaluated the upper and lower half scheme. It distributes one spawn to the next
available core and the other spawn to the core half around the ring network. As can be seen in

1Our simulation only considers target annotations but does not take resource constraints into account. On a real
implementation of the Microgrid, not all threads might actually be created. Nonetheless, our model is well suited to
predict maximum distribution.

7

0	

100	

200	

300	

400	

500	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	

Figure 5: Simulated thread distribution using the current and next scheme on a Microgrid with 16
cores. The x-axis denotes the core whereas the y-axis gives the number of active threads. We have
plotted time along the z-axis.

0	

100	

200	

300	

400	

500	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	

Figure 6: Simulated thread distribution using the prev and next scheme on a Microgrid with 16
cores. The x-axis denotes the core whereas the y-axis gives the number of active threads. We have
plotted time along the z-axis.

8 3 MANAGING RESOURCE MAPPING STRATEGIES

0	

100	

200	

300	

400	

500	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	

Figure 7: Simulated thread distribution using the upper and lower half scheme on a Microgrid with
16 cores. The x-axis denotes the core whereas the y-axis gives the number of active threads. We
have plotted time along the z-axis.

Figure 4, this scheme performs slightly worse than the prev and next scheme on smaller Microgrids
with less than 8 cores. However, for larger Micrgrids, it scales better. The cause is its more efficient
distribution scheme, as shown in Figure 7. After ten recursive descends, most cores are active. This
scheme produces two hot spots, whose centers are opposite on the ring network.

Comparing the results for our explicit mapping scheme in Figure 7 with the results from the
automated balancing scheme in Figure 3 shows that the explicit approach scales better yet has
significantly longer overall runtime. Whereas the automated approach completes in in about 30
million cycles on one core, our best explicit approach needs 16 cores to achieve similar runtimes. This
suggests that we have traded sequential performance for scalability. However, the implementation in
Figure 3 achieves its good sequential performance by limiting the recursive unfolding of concurrency
to cases where the expected workload is big enough. To allow for a fair comparison, we have
implemented the same approach using our best explicit mapping strategy, i.e., a lower and upper
half mapping. Figure 8 presents our findings. As can be seen, using concurrency throttling, our
explicit approach nearly reaches the sequential runtime of its counterpart using automated mapping.
With increasing core counts, the overheads of the balanced approach start to show. Our explicit
mapping scales linearly for up to 4 cores and reaches its peak performance at 16 cores.

Even though the explicit distribution using the lower and upper half strategy works well for less
than 8 cores, its tendency to produce two hot spots fires back for larger core counts. Figure 9 shows
the expected thread distribution for the upper and lower half scheme on 64 cores. Basically the
pattern is the same as in Figure 7, just that now the two hotspots are far apart. Overall, though,
the same number of cores is used.

As these experiments show, ultimately resource mapping will have to take the number of cores
available on a Microgrid into account. We are currently evaluating further approaches that, al-
though using a mapping depending on the number of cores, still allow for scalability of binary
programs. Simply computing a mapping at runtime is too costly, as the hardware implementation
of the balanced scheme has shown. Using higher-order annotations in spawn operations that are
parameterised over the number of cores might be a solution. However, for performance reasons,
such a solution needs to be implemented in the systems language SL and the hardware, as well.

9

Figure 8: Runtime results of our quick sort implementation using concurrency throttling using
automated balanced mapping (hybrid rspawn quicksort approach 4) and explicit lower and upper
half mapping (qsort hybrid conf 2).

0	

100	

200	

300	

400	

500	

1	 4	 7	 10	 13	 16	 19	 22	 25	 28	 31	 34	 37	 40	 43	 46	 49	 52	 55	 58	 61	 64	

Figure 9: Simulated thread distribution using the upper and lower half scheme on a Microgrid with
64 cores. The x-axis denotes the core whereas the y-axis gives the number of active threads. We
have plotted time along the z-axis.

10 4 REFERENCE COUNTING STRATEGIES FOR COMBINED FP AND DP

4 Reference Counting Strategies For Combined FP and DP

In functional programming languages, data is usually treated as immutable values. Consequently,
to update data, even partially, requires a copy of the original. In classical functional languages with
is usually small data structures, the resulting runtime overhead is tolerable. For a language like
SaC, however, where large array values are the predominant kind of data, copying values for partial
updates is not an option.

Therefore, SaC uses reference counting to accurately track the liveness of data objects at run-
time. If an array that is to be updated is not referenced otherwise, it can be updated in place
without violating the immutability requirement. As an additional bonus, liveness information can
be used for automatic heap management, thereby avoiding the overheads of garbage collection.

The benefits of reference counting come at a price. By its very nature, reference counting is
sequential. It operates on shared state and usually updating that state requires a globally consistent
view. For few numbers of threads, this sequentialisation can be tolerated as the parallel workload
of each thread outweighs sequential components. In the context of the Microgrid, however, syn-
chronisation costs due to maintaining the global reference counting state quickly become a bottle
neck.

To overcome this hurdle, we have developed asynchronous non-deferred reference counting [8, 6].
Our novel approach exploits the latency hiding capabilities of the Microgrid to interleave reference
counting operations and the actual workload. Reference counting operations thereby are asyn-
chronously delegated to a separate execution resource, allowing the actual compute cores to con-
tinue execution of workloads. Only if the global reference counting state needs to be queried, we
synchronize the querying core with the reference counting resource. This, of course, still leads to a
sequentialisation of execution. However, only one core is involved and such operations a relatively
rare.

Figure 10 demonstrates the runtime behaviour of our approach for a two dimensional FFT on
256 element vectors. We have plotted three different metrics over time, which is measured in clock
cycles. The first metric is the overall pipeline efficiency, given by the red line in percent (cf. left
y-axis); it measures how many cycles, on average, are spent computing the actual workload as
opposed to waiting for results or resources to become abvailable. On a single core, the utilisation
always remains above 50% and ocassionally spikes above 80%. These spikes coinside with reduced
reference counting loads, depicted by the blue line. We measure the reference counting load by
observing the number of threads that await processing by the dedicated reference counting core.
The correspondign scale is given by the right y-axis.

The last metric we observe it the number of active threads computing the workload, given in
green. For our FFT example, we start out by using the maxiumum number of available threads,
and consecutively create just enough threads to keep the machine occupied. Overall, on a single
core, the computation of FFT requires just above 50 million cycles.

To study the scalability of our asynchronous reference counting approach, we have measured
the same benchmark for varying numbers of cores. Graphs (b) and (c) exhibit nearly linear scaling
for two and four cores. The overall runtime is reduced to 25 and 14 million cycles, respectively.
However, from 8 cores onwards (cf. Graphs (d) to (g)) overall runtime stagnates at around 10
million cycles.

The reason for this stagnation is to be found in the increasing concurrent reference counting
load. As an indicator, consider the queue size for pending reference counting operations at the
reference counting resource (blue line). For up to four cores, the queue length periodically increases
but over time returns back to an empty state. Thus, the reference counting core is able to cope
with its workload before the other cores run out of actual work to compute. From 8 cores onwards,
this is no longer the case. The reference counting queue is nearly constantly filled and the reference
counting operations can no longer be completed in time. Instead, cores that compute the actual
workload have to wait until space in the queue becomes available. This is reflected in the decreasing
pipeline utilisation rate (red line).

Thus, even though our approach is able to tolerate some reference counting load, ultimately

11

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07
 0

 500

 1000

 1500

 2000

ut
iliz

at
io

n

ac
tiv

e
th

re
ad

s
/ e

xc
lu

si
ve

 q
ue

ue
 s

iz
e

Execution on 1 cores

pipeline utilization
active threads

exclusive queue size

(a) one core

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07
 0

 500

 1000

 1500

 2000

ut
iliz

at
io

n

ac
tiv

e
th

re
ad

s
/ e

xc
lu

si
ve

 q
ue

ue
 s

iz
e

Execution on 2 cores

pipeline utilization
active threads

exclusive queue size

(b) two cores

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07
 0

 500

 1000

 1500

 2000

ut
iliz

at
io

n

ac
tiv

e
th

re
ad

s
/ e

xc
lu

si
ve

 q
ue

ue
 s

iz
e

Execution on 4 cores

pipeline utilization
active threads

exclusive queue size

(c) four cores

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07
 0

 500

 1000

 1500

 2000

ut
iliz

at
io

n

ac
tiv

e
th

re
ad

s
/ e

xc
lu

si
ve

 q
ue

ue
 s

iz
e

Execution on 8 cores

pipeline utilization
active threads

exclusive queue size

(d) 8 cores

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07
 0

 500

 1000

 1500

 2000

ut
iliz

at
io

n

ac
tiv

e
th

re
ad

s
/ e

xc
lu

si
ve

 q
ue

ue
 s

iz
e

Execution on 16 cores

pipeline utilization
active threads

exclusive queue size

(e) 16 cores

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06
 0

 500

 1000

 1500

 2000

ut
iliz

at
io

n

ac
tiv

e
th

re
ad

s
/ e

xc
lu

si
ve

 q
ue

ue
 s

iz
e

Execution on 32 cores

pipeline utilization
active threads

exclusive queue size

(f) 32 cores

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06
 0

 500

 1000

 1500

 2000

ut
iliz

at
io

n

ac
tiv

e
th

re
ad

s
/ e

xc
lu

si
ve

 q
ue

ue
 s

iz
e

Execution on 64 cores

pipeline utilization
active threads

exclusive queue size

(g) 64 cores

Figure 10: Runtime behaviour of a 2-dimensional 256 element FFT running on varying numbers of
cores using asynchronous deferred reference counting.

12 4 REFERENCE COUNTING STRATEGIES FOR COMBINED FP AND DP

1 int f (int [6 4 0 0 0] vect , int idx , int load)
{

3 r e s = vect [idx] ;
for (i = 0 ; i < load ; i++) {

5 r e s += 1 ;
}

7 return (r e s) ;
}

9

int run (int [6 4 0 0 0] vect , int s i z e , int load)
11 {

r e s = with {
13 ([0] <= [i] < [s i z e]) : f (vect , i , load) ;

} : modarray(vect) ;
15 return (r e s [1 0]) ;

}

Figure 11: An artificial example demonstrating the Amdahl effect from asyncronous reference count-
ing in massive sharing in SaC.

Amdahl’s law [1] hits us and the sequential component due to reference counting dominates. Con-
sequently, the only solution that allows for true scalability is to reduce the reference counting load.

The effect we observe on FFT can be demonstrated in a nutshell using the example shown in
Figure 11. All that is done here is to call a function f within a massive sharing situation and to
pass the vector vect as an argument. This requires all threads to increment the reference count of
vect roughly at the same time. Subsequently, within the body of the function f the reference count
of vect is decremented after the variable has been read from. Finally, the parameter load allows
us to control some artficial load. Given this setup, it is to be expected, that for small loads, the
massive reference counting on vect dominates the overall runtime.

However, the data parallel setting here combined with the side-effect free nature of SaC code
gives rise to a simple yet very effective optimisation. Whenever we pass a variable into a data
parallel context, we know for sure that this data structure cannot be aliased and, thus, cannot
leave the data-parallel context at all. As a consequence, we can, at least conceptually, surpress all
refrerence counting on such variables within the data parallel context and treat the reference within
that context as a single reference outside of the data parallel context.

Doing so, of course weakens the accuracy of liveness information gained. Even though the last
reference to a variable passed into a data parallel section might lie inside of that section, we will
only find out after the section has completed. Thus, we might miss an opportunity for updating a
variable in place and introduce an additional copy. Although this at first glance seems to have a
dramatic impact on runtime, actually little harm is done in practice. If an array update happens
within a data-parallel construct, all threads but one will have to copy the array in either case.
Thus, the runtime overhead already is high. High enough, in fact, to mask the additional copy.
Furthermore, as our experience shows, such cases are rather rare.

With this observation in mind, we have created a bi-modal reference counting strategy. Upon
allocation of a data structure, we start reference counting in asyncronous mode as needed for
functional concurrency. Whenever we enter a data parallel context, we switch into a no-reference-
counting mode for all data structures that are passed into the data parallel section (like vect in the
example of Figure 11). After the data parallel section has been completed, we switch back to the
asynchronous mode.

We have implemented this scheme in our research compiler. To infer whether a data structure
is shared and thus has its reference counting suspended, we use a tag in the reference counting
descriptor itself. On entry into a data parallel section, all shared data is tagged and on exit the

13

Figure 12: Runtime comparison for the artificial example from Figure 11 for asynchronous versus
bi-model reference counting.

tag is reset to its previous value. A complication arises if the data structure is not only shared
within the data-parallel section but between different threads emanating from spawn operations, as
well. In this case, updating the tag in the reference counter, which is a shared resource, is not safe.
Therefore, we create copies of the descriptors, thereby resolving the sharing. As we know that the
data-parallel section has no impact on the value of the reference counter, it is safe to simply discard
the copies after the data parallel section. Copying the descriptor also resolves potential sharing due
to aliasing.

Figure 12 shows the runtime effect of the two reference counting strategies: asyncronous (labelled
async) and the bimodal technique (labelled async-norc). As to be expected, the purely asychronous
approach does not scale well. Beyond 2 cores, scaling is limited. Even worse, the additional
communication overhead due to the increased number of hops on the ring network, combined with
the contention on the reference counting queue even negatively impacts runtimes. Execution on 16
or more cores is slower than on a dual-core Microgrid.

With our optimisation in place, the runtime on a single core is slightly higher. We attribute this
to the overhead of checking the reference counting mode of data structures during reference counting
operations. However, our artificial examples now scales linearly with the number of available cores.
As only the data structure referenced by vect is reference counted and as this data structure is
passed into the data parallel section, no reference counting happens during concurrent execution.
Amdahl’s law no longer inhibits scaling.

To verify our optimisation in a real world scenario, we have rerun our FFT example using the
bi-modal reference counting approach. As Figure 13 shows, our implementation now scales beyond
four cores. For 8 cores, we achieve an overall runtime of 8 million cycles. Yet, we still observe a
high reference counting load, which from 16 cores onward inhibits further scaling.

A post mortem of the code reveals the cause: To compute the FFT of each vector in the 2
dimensional FFT, we use the Cooley-Tukey algorithm [3] that computes FFT using a divide and
conquer strategy. A mayor step in the algorithm is to split the input vector into two vectors holding
the elements at odd or even index positions. This two data structures are then passed on into two
recursive applications of the algorithm.

Although we have eliminated the reference counting operations on shared data structures in

14 4 REFERENCE COUNTING STRATEGIES FOR COMBINED FP AND DP

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07
 0

 500

 1000

 1500

 2000

ut
iliz

at
io

n

ac
tiv

e
th

re
ad

s
/ e

xc
lu

si
ve

 q
ue

ue
 s

iz
e

Execution on 1 cores

pipeline utilization
active threads

exclusive queue size

(a) one core

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07
 0

 500

 1000

 1500

 2000

ut
iliz

at
io

n

ac
tiv

e
th

re
ad

s
/ e

xc
lu

si
ve

 q
ue

ue
 s

iz
e

Execution on 2 cores

pipeline utilization
active threads

exclusive queue size

(b) two cores

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07
 0

 500

 1000

 1500

 2000

ut
iliz

at
io

n

ac
tiv

e
th

re
ad

s
/ e

xc
lu

si
ve

 q
ue

ue
 s

iz
e

Execution on 4 cores

pipeline utilization
active threads

exclusive queue size

(c) four cores

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06
 0

 500

 1000

 1500

 2000

ut
iliz

at
io

n

ac
tiv

e
th

re
ad

s
/ e

xc
lu

si
ve

 q
ue

ue
 s

iz
e

Execution on 8 cores

pipeline utilization
active threads

exclusive queue size

(d) 8 cores

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06
 0

 500

 1000

 1500

 2000

ut
iliz

at
io

n

ac
tiv

e
th

re
ad

s
/ e

xc
lu

si
ve

 q
ue

ue
 s

iz
e

Execution on 16 cores

pipeline utilization
active threads

exclusive queue size

(e) 16 cores

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06
 0

 500

 1000

 1500

 2000

ut
iliz

at
io

n

ac
tiv

e
th

re
ad

s
/ e

xc
lu

si
ve

 q
ue

ue
 s

iz
e

Execution on 32 cores

pipeline utilization
active threads

exclusive queue size

(f) 32 cores

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06
 0

 500

 1000

 1500

 2000

ut
iliz

at
io

n

ac
tiv

e
th

re
ad

s
/ e

xc
lu

si
ve

 q
ue

ue
 s

iz
e

Execution on 64 cores

pipeline utilization
active threads

exclusive queue size

(g) 64 cores

Figure 13: Runtime behaviour of a 2-dimensional 256 element FFT running on varying numbers of
cores using bi-modal deferred reference counting.

15

data-parallel sections, locally allocated data structures still cause reference counting operations
to be issued if those data structures are passed into functions. Other than the example shown
in Figure 11 that only uses shared data structures, the FFT code passes local data structures
into function applications. Thus, in our bi-modal scheme, each function application leads to two
asynchronous reference counting operations: One caller increment and the corresponding callee
decrement. The operations, furthermore, cannot be elided. Other than for shared data structures,
we cannot statically decide on the lifetime of locally allocated data as those may be aliased.

Still, there is potential for optimisation. If function calls are not spawned, we know that they
will be executed sequentially on the same core as the calling function was executed. With this
knowledge, it safe to use a local reference counter for those data structures, in the same way as we
do during sequential compilation of SaC. However, as soon as we spawn a function, all data passed
as arguments needs to switch to the asynchronous distributed reference counting style, as otherwise
global consistency of the reference counting state cannot be guaranteed.

We have implemented this approach, which we call tri-modal reference counting. For all local
data, we allocate a local descriptor which holds the reference counting information at runtime. If we
enter a data-parallel section, we tag the descriptor to inhibit further reference counting operations.
If we encounter a spawn operation, we need to split the reference counting data between the two
threads such that each can safely continue. To achieve this, we use a hierarchical approach. We
create an asynchronous master counter at the dedicated reference counting resource, which counts
the number of local reference counting descriptors a data structure has. Furthermore, we allocate
a secondary local reference counting descriptor for the newly spawned thread. The master counter
therefore initially has the value two.

To keep the information in sync, we link both local descriptors to the asynchronous master
descriptor. The local descriptors are then used for reference counting as before. If, however, the
local counter drops to zero, we now have to enquire with the master counter whether further local
counters exist. Likewise, to acertain whether data can be updated destructively, we have to ensure
that both the local and master counter have a value of one.

If we need to further split a reference counter for which a master already exists, it suffices to
increment the master counter and create one copy.

Figure 14 presents the runtime behaviour of FFT when using our tri-modal reference counting
approach. As can be seen, the asynchronous reference counting load (blue line) is drastically reduced.
Most reference counting is either elided or performed locally. This has a benenficial effect on the
overall pipeline utilisation, as well. As we no longer have to enqueue remote reference counting
operations, the corresponding delays vanish, too.

Yet, the runtime on a single core has increased from just above 50 million cycles to just over
60 million cycles. We attribute this to management overheads in the tri-modal scheme: For each
reference counting operation, we have to identify which of three modes is currently active.

When executing on multiple cores, this overhead is masked by better scalability. Our implemen-
tation now scales nearly linearly for up to 32 cores, yielding a total runtime of just above 2 million
cycles, which equates to nearly a 30 fold speedup. Ultimately, however, scaling is limited by the
size of the workload. Beyond 32 cores, the pipeline utilisation drops as fewer work is available.

Although our tri-modal approach overcomes the limitations of the purely asynchronous approach,
there is still room for optimisations. Currently, we need to copy descriptors every time new threads
are spawned due to functional concurrency. These allocations, although small in size, put a strain on
the heap allocator. The allocation itself, thereby poses less of a challenge. The distributed, lock-free
allocator we use copes well with high loads. As it allocates data locally and uses an efficient arena
based allocation strategy, allocations of small data structures are cheap. The overhead arises when
those data structures are no longer needed. To prevent locking, we use a deferred freeing strategy.
When some data is freed that was allocated in a different thread’s heap, we only mark the data as
garbage. During a consecutive allocation by that thread, we pick up the garbage and free it.

Garbage collection in our approach inevitably requires a traversal of the heap, as we cannot
update management structures at free time to avoid locking. The more items have been allocated,
the longer this traversal takes. This is where the additional heap manager load hits.

16 4 REFERENCE COUNTING STRATEGIES FOR COMBINED FP AND DP

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

ut
iliz

at
io

n

ac
tiv

e
th

re
ad

s
/ e

xc
lu

si
ve

 q
ue

ue
 s

iz
e

Execution on 1 cores

pipeline utilization
active threads

(a) one core

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

ut
iliz

at
io

n

ac
tiv

e
th

re
ad

s
/ e

xc
lu

si
ve

 q
ue

ue
 s

iz
e

Execution on 2 cores

pipeline utilization
active threads

(b) two cores

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07 1.6e+07 1.8e+07
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

ut
iliz

at
io

n

ac
tiv

e
th

re
ad

s
/ e

xc
lu

si
ve

 q
ue

ue
 s

iz
e

Execution on 4 cores

pipeline utilization
active threads

(c) four cores

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

ut
iliz

at
io

n

ac
tiv

e
th

re
ad

s
/ e

xc
lu

si
ve

 q
ue

ue
 s

iz
e

Execution on 8 cores

pipeline utilization
active threads

(d) 8 cores

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

ut
iliz

at
io

n

ac
tiv

e
th

re
ad

s
/ e

xc
lu

si
ve

 q
ue

ue
 s

iz
e

Execution on 16 cores

pipeline utilization
active threads

(e) 16 cores

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

ut
iliz

at
io

n

ac
tiv

e
th

re
ad

s
/ e

xc
lu

si
ve

 q
ue

ue
 s

iz
e

Execution on 32 cores

pipeline utilization
active threads

(f) 32 cores

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06 2e+06
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

ut
iliz

at
io

n

ac
tiv

e
th

re
ad

s
/ e

xc
lu

si
ve

 q
ue

ue
 s

iz
e

Execution on 64 cores

pipeline utilization
active threads

(g) 64 cores

Figure 14: Runtime behaviour of a 2-dimensional 256 element FFT running on varying numbers of
cores using multi-modal deferred reference counting.

17

We have designed an alternative scheme that uses the pointer to the reference counting descriptor
for tagging instead of the descriptor, itself. Copying a pointer can be achieved in a local variable or
even register and thus has very little runtime overhead. Furthermore, as we only need two bits to
enumerate all three states, we only loose a maximum of 8 bytes per descriptor due to the required
alignment. Overall, we expect this approach to be very lighweight. Unfortunately, we cannot present
runtime results, yet, as our implementation has not yet sufficiently stabilised.

5 Implementation Status

We have implemented all the techniques described in this report and they are available as part of
the latest release of the SaC compiler sac2c or the latest Microgrid tool chain, respectively. In
particular, the latest release includes

1. the lock-free, distributed heap manager with deferred garbage collection with support for
thread-local stacks,

2. support for various thread distribution techniques and means to exploit them from SaC
programs, and

3. an implementation of the trimodal distributed, non-deferred reference counting.

Whereas the heap manager is enabled by default, thread distribution and reference counting
techniques are exposed to the user. Thread distribution can be either influenced by using a target
argument to spawn operations in SaC programs or using a sac2c command line option. Usually the
former approach would be chosen to expose algorithm specific distribution strategies to the runtime
system. However, if no such sophisticated approach is required, we allow the user to override
annotations using the mutc_force_spawn_flags command line parameter. It expects as argument
a valid SL place expression, which is then used for all spawn operations.

The active reference counting technique is configured using the sac2c options file sac2crc.
We have opted for a more persistent configuration in this case as the trimodal reference counting
approach, which is enabled by default, is superior in most cases and thus should usually not be
changed. We provide this option mainly to allow for experimentation. To change the reference
counting mode, the parameter RC_METHOD must be set to one of the following values:

local Traditional reference counting assuming locality.

norc No reference counting at all.

async Asynchronous reference counting. RC is done through messages to a seperate core. Re-use
and freeing implies synchronisation.

local norc desc Switches from local to norc and back. Implies no re-use or freeing of non-local
variables in a concurrent context. Implements the mode via a flag in the descriptor.

local norc ptr Same as previous but encodes the mode in the lowest bits of the pointer to the
descriptor.

async norc copy desc Switches from async to norc and back. Whenever going to norc, the
descriptor is being copied.

async norc two descs Same as previous but instead of copying we always allocate two descriptors.

async norc ptr Same as previous but instead of having two descriptors. We encode the mode in
the pointer.

18 6 CONCLUSIONS

local pasync norc copy desc Very similar to local norc desc. The only difference is that when
spawning a thread we create a copy of the descriptor and use the original one as asynchronous
parent.

local async norc ptr Very similar to async norc ptr. The only difference is that we start in local
and we try to get back there whenever possible.

The full tool-chain is available for download from http://www.apple-core.info/resources/.
Note that as of this writing, the pointer based referenc counting modes (identified by the ptr suffix
above) are not yet sufficiently stable for production use. Updates to the SaC tool chain beyond the
scope of Apple-CORE are available from the project’s website at http://www.sac-home.org.

6 Conclusions

During the last year of Apple-CORE, we have concentrated on improving the support for functional
concurrency in SaC and its interplay with the existing data-parallel framework. We came to realise
that functional concurrency due to its lack of structure requires different support, both in hard- and
software, than the data-parallel concurrency we have studied first. In particular, we had to make
major investments into an efficient runtime system for massively parallel architectures, which we
believe applies well beyond the Microgrid.

As our results show [11], these investments have paid off. We achieve significant performance
improvements over the old runtime system and hardware implementation. Due to our simulation
based infrastructure, we were only able to investigate small kernels and benchmarks. Scaling this
up to full applications would yield further insight and is expected to expose further optimisation
potential.

Another realisation is the power that hardware/software co-design brings to language design-
ers and compiler writers. The solutions we propose in this report, i.e., the heap manager, the
non-deferred reference counting approach and the scheduling and mapping strategies, all required
changes to the hardware. Either these changes enabled the approach in the first place (heap man-
ager) or greatly enhanced its performance (reference counting). This great power, however, comes
at a price. Implementing the heap manager required changes to the entire tool chain, from the
simulator, via runtime libraries, all the way to the high-level languages. The same is true for the
reference counting approach. This has bound more development resources than we had anticipated.

The loser in the struggle for resources, in the end, unfortunately was the research on automatic
extraction of functional concurrency from existing SaC programs. Our current solution requires
explicit programmer annotations. We still believe in the power of automated solutions and that
such solutions are feasible. Having a manual solution in place, research towards an automated one is
now under way. Finding a solution, however, will remain a task outside of the scope Apple-CORE.

REFERENCES 19

References

[1] G. M. Amdahl. Validity of the Single Processor Approach to Achieving Large Scale Computing
Capabilities. In Proceedings of AFIPS, volume 30, page 483, Washington, DC, USA, 1967.

[2] K. Bousias, L. Guang, C.R. Jesshope, and M. Lankamp. Implementation and evaluation of a
microthread architecture. Journal of Systems Architecture, 55(3):149–161, 2009.

[3] James W. Cooley and John W. Tukey. An algorithm for the machine calculation of complex
fourier series. Math. Comp., (19):297–301, 1965.

[4] Clemens Grelck, Stephan Herhut, Chris Jesshope, Carl Joslin, Mike Lankamp, Sven-Bodo
Scholz, and Alex Shafarenko. Compiling the Functional Data-Parallel Language sac for Mi-
crogrids of Self-Adaptive Virtual Processors. In 14th Workshop on Compilers for Parallel
Computing (CPC’09), IBM Research Center, Zurich, Switzerland, 2009.

[5] Clemens Grelck and Kai Trojahner. Implicit Memory Management for SaC. In Clemens
Grelck and Frank Huch, editors, Implementation and Application of Functional Languages,
16th International Workshop, IFL’04, pages 335–348. University of Kiel, Institute of Computer
Science and Applied Mathematics, 2004. Technical Report 0408.

[6] Stephan Herhut, Carl Joslin, and Sven-Bodo Scholz. Functional concurrency on the micro-
grid using single assignment c – a status report. Technical report, Deliverable 4.3 of the EU
Framework 7 Apple-CORE project, 2010.

[7] Stephan Herhut, Carl Joslin, and Sven-Bodo Scholz. Thread-Local Stacks, a Light-Weight
Alternative to Thread-Local Heaps. In 15th Workshop on Compilers for Parallel Computing
(CPC’10). Vienna University of Technology, Vienna, Austria, 2010.

[8] Stephan Herhut, Carl Joslin, Sven-Bodo Scholz, Raphael Poss, and Clemens Grelck. Con-
current Non-Deferred Reference Counting on the Microgrid: First Experiences. In J. Haage
and M. Morazán, editors, 22nd International Symposium on Implementation and Application
of Functional Languages (IFL’10), Alphen a/d Rijn, Netherlands, Revised Selected Papers,
volume 6647 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Heidelberg, New
York, 2011. to appear.

[9] Raphael Poss and Mike Lankamp. Family allocation and places. https://notes.svp-home.
org/mgsim12.pdf.

[10] Raphael Poss, Mike Lankamp, Thomas Bernard, and C.R. Jesshope. SL language reference.
https://mac-chris.science.uva.nl/csa/notes/www/book5.pdf.

[11] Daniel Rolls and Chris Jesshope. Final report of benchmark evaluations in different pro-
gramming paradigms. Technical report, Deliverable 2.3 of the EU Framework 7 Apple-CORE
project, 2010.

[12] S.-B. Scholz. Single Assignment C — efficient support for high-level array operations in a
functional setting. Journal of Functional Programming, 13(6):1005–1059, 2003.

[13] Sven-Bodo Scholz, Stephan Herhut, and Carl Joslin. Implementation of a first SaC to
µTC compiler. http://www.apple-core.info/wp-content/apple-core/2008/01/d42.pdf.
Apple-CORE Deliverable D4.2.

