Unibench: A Tool for Automated and Collaborative Benchmarking

Daniel Rolls, Carl Joslin and Sven-Bodo Scholz
University of Herfordshire, Hatfield, UK
{d.s.rolls,c.a.joslin,s.scholz} @herts.ac.uk

Abstract—We have identified the need for a universal bench-
marking tool that enforces consistency as well as proper
documentation. Enforcing these aspects without restricting the
tool’s applicability poses a major challenge.

This paper introduces a tool for coordinating the running of
experiments on remote machines. A simple web interface allows
for source code to be submitted. Experiments are run and
results are publicly disseminated via a web interface without
user intervention. The system has already enabled sharing of
resources internationally and good scientific inquiry.

I. INTRODUCTION

Those with experience in performing any kind of dynamic
code analysis or runtime measurements know that this is
more tedious than it appears. The challenges are choosing
an appropriate set of programs to be analysed and choosing
an adequate setup for the experiments. A setup includes
such choices as program parameters, tool-chain settings and
hardware configurations.

Systematic experiments require a range of measurements
to be taken, each of which utilises a hardware resource
exclusively. Typically, scripts are used to trigger these ex-
periments automatically. Repeated manual invocation in-
creases the chance of experimental errors, and requires the
researcher’s constant attention.

In the authors’ experience, even semi-automation can be
troublesome. We may see, for example, failures in tool-
chains, problems which require excessive resources, errors
in scripts or defects in the hardware or software. In most
cases, such errors imply changes in the benchmarking scripts
which, in turn, often requires all experiments to be repeated
to guarantee the consistency of the investigation.

Errors often result in the need for further experiments such
as repeating runs with slightly modified setups. This leads to
an iteration of the measurement process where scripts need
to be adjusted and experiments repeated.

After several iterations of the above cycle, the final set of
experiments needs to be documented in a way that enables
other researchers to repeat the experiments and, hopefully,
to obtain equivalent results. In our experience, this is near
impossible. Even with good documentation, public source
code, and where the particular version of tool-chain used
is still available, the executing machinery is almost never
available in the same form as it was for the original experi-
ment. The same applies for the laboriously generated scripts
for automating the measurements. Even within a single

research group it can be difficult to share these scripts which
tend not to be flexible enough. Cross-institution cooperative
benchmarking compounds these difficulties.

II. OVERVIEW OF UNIBENCH

We have developed Unibench to help researchers to docu-
ment, perform experiments and archive in a more structured,
efficient and collaborative way than earlier tools allowed.
Users can submit scripts to perform any experiment, which
may perform any kind of dynamic runtime analysis for
which command line tools exist.

Unibench tackles the problems of human error when
running experiments, the lack of sharing of resources and
common infrastructures for benchmarking, and the unre-
peatablility of many published experiments; without long
term archiving unrepeatability becomes inevitable even in
the most diligent research group.

Unibench manages source code, compilers and measure-
ment scripts and initiates all possible compilations of source
code. It runs all measurement scripts that can be run on
the compiled binaries and hence the burden of scheduling
jobs is removed from users. The scheduler orders jobs to
avoid unnecessary compilation and to give preference to
experiments using newer content in the database. A priority
mechanism exists to allow users to affect the scheduler when
necessary in a simple way.

Unibench automates the running of experiments. There-
fore any tool for case studies must have the capability to
replay any user interaction simulated from runtime input.
These custom inputs during runtime analysis are supported
by simply uploading input files through the web interface.
It is possible also to upload multiple versions of source files
and to observe changes in software over time.

The compilers that Unibench can use may be on ma-
chines anywhere in the world. Machine owners can provide
Unibench with an ordinary SSH login. The priority mech-
anism specifies priorities per machine and a rights system
restricts which accounts can be used to change priorities,
enabling machine owners to control what can be run.

Source code, measurement scripts and different configura-
tion options for compilers are stored centrally and distributed
to machines on demand. This encourages sharing, aids
reuse and provides transparency. Figure 1 illustrates this
remote management of jobs by Unibench. Both static and
dynamic code analysis tools [2] for program comprehension

Computation server

Figure 1. Process flow for Unibench experiments. Compilation and
measurement are shown as static and dynamic analysis to emphasise that
any kind of static or dynamic analysis is possible.

e.g. software Reconnaissance tools [1] could be used. Any
command-line driven tool that produces a numerical metric
or indexed array of metrics is viable.

We regret that machine configurations will always change
but as new machines and compilers appear, Unibench will
automatically run old experiments on the new configurations
for comparison with new experiments.

The results Unibench has collected are publicly viewable.
An online search form allows users to quickly narrow down
search criteria to find specific results. Source code is highly
categorised to ensure that this is always manageable.

For interpretation of results a powerful scripting solution
exists [3]. Scripts are applied to search queries and are used
for common tasks like graph generation. Graphs created
via Unibench, like almost everything else in Unibench, are
publicly viewable along with their dependencies.

Crucially, all data used in graphs stays in the database,
along with source code and measurement scripts that were
used when experiments were run. This allows good scientific
enquiry since there is no need to email publishers of graphs
asking for scripts and source code used for experiments; with
a healthy scepticism we can check experiments ourselves.

Unibench uniquely integrates submission of code, auto-
mated running of experiments and public dissemination of
the results. In this way results are shared and resources
pooled in a way that encourages better scientific inquiry.
Unibench schedules the running of these experiments but
what these experiments are and how they run is left open.
This allows research groups with very different method-
ologies to benefit from the system and even reuse existing
scripts and tools for measurements and graphs.

So far the main hurdle to adoption has been encouraging
initial setup of custom compilation and measurement phases
for users’ unique requirements: code submission through the
web form has raised few problems.

As a use case, if Unibench were used for profiling, mea-
surement scripts would need to initiate a profiler and could
produce a one-dimensional list of method call frequencies
indexed by name. Functionality already exists to produce bar
graphs for multiple data series where array indexes are on
the x axis. Hence this functionality could be used to plot the

frequency of method calls side-by-side for different inputs,
tools, tool versions or source implementations. Equally,
different algorithms for dynamic feature analysis on matrices
of results [1], can be implemented on Unibench with scripts.
The work from the above cited paper can be wrapped up into
a measurement script used on Unibench which calls the tool
and returns the result array. Similarly, any automatable tool
that given an executable produces a numerical metric is a
valid measurement script that can be uploaded.

III. SUMMARY

Once a machine is registered with Unibench the steps to
initiate experiments are to install a script to compile and/or
statically analyse code and register it with the web interface;
to upload to the web interface a measurement script for your
desired dynamic analysis; to upload source code via a web
form; and to browse and interpret results with scripts on the
web site.

Currently, users can upload source code implementations
via a simple web interface and, without further effort,
various experiments to compare these implementations will
be run on systems around the world. Results from these ex-
periments are immediately publicly disseminated, although
code with copyright restrictions can be hidden.

Guests to the Unibench website can browse through suites
of benchmarks and view their specifications, implementa-
tions, accepted inputs and results from various experiments.
We want to encourage collaboration amongst computer
science research groups in this area, so that the community
can share benchmarking data and learn from each other.

Unibench is publicly accessible at unibench.apple-core.
info. The system is actively used and runs experiments on
machines in the UK, Netherlands, Greece and Canada.

ACKNOWLEDGMENT

Funded by the European FP-7 Integrated Project Apple-
core (FP7-215216 — Architecture Paradigms and Program-
ming Languages for Efficient programming of multiple
COREs).

REFERENCES

[1] Thomas Eisenbarth, Rainer Koschke, and Daniel Simon. Aid-
ing program comprehension by static and dynamic feature
analysis. In ICSM °01: Proceedings of the IEEE International
Conference on Software Maintenance (ICSM’01), page 602,
Washington, DC, USA, 2001. IEEE Computer Society.

[2] Thomas Gschwind, Johann Oberleitner, and Martin Pinzger.
Using run-time data for program comprehension. In IWPC
'03: Proceedings of the 11th IEEE International Workshop on
Program Comprehension, page 245, Washington, DC, USA,
2003. IEEE Computer Society.

[3] Sven-Bodo Scholz. Single assignment c: efficient support for
high-level array operations in a functional setting. J. Funct.
Program., 13(6):1005-1059, 2003.

